Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Leprosy is an old, still dreaded infectious disease caused by the obligate intracellular bacterium Mycobacterium leprae. During the infectious process, M. leprae is faced with the host macrophagic environment, where the oxidative stress and NO release, combined with low pH, low pO2, and high pCO2, contribute to limit the growth of the bacilli. Comparative genomics has unraveled massive gene decay in M. leprae, linking the strictly parasitic lifestyle with the reductive genome evolution. Compared with Mycobacterium tuberculosis and Mycobacterium bovis, the leprosy bacillus has lost most of the genes involved in the detoxification of reactive oxygen and nitrogen species. The very low reactivity of the unique truncated hemoglobin retained by M. leprae could account for the susceptibility of this exceptionally slow-growing microbe to NO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15216540214542 | DOI Listing |