Human diallelic insertion/deletion polymorphisms.

Am J Hum Genet

Center for Medical Genetics, Marshfield Medical Research Foundation, Marshfield, WI 54449, USA.

Published: October 2002


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the identification and characterization of 2,000 human diallelic insertion/deletion polymorphisms (indels) distributed throughout the human genome. Candidate indels were identified by comparison of overlapping genomic or cDNA sequences. Average confirmation rate for indels with a > or =2-nt allele-length difference was 58%, but the confirmation rate for indels with a 1-nt length difference was only 14%. The vast majority of the human diallelic indels were monomorphic in chimpanzees and gorillas. The ratio of deletionrcolon;insertion mutations was 4.1. Allele frequencies for the indels were measured in Europeans, Africans, Japanese, and Native Americans. New alleles were generally lower in frequency than old alleles. This tendency was most pronounced for the Africans, who are likely to be closest among the four groups to the original modern human population. Diallelic indels comprise approximately 8% of all human polymorphisms. Their abundance and ease of analysis make them useful for many applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC378541PMC
http://dx.doi.org/10.1086/342727DOI Listing

Publication Analysis

Top Keywords

human diallelic
12
diallelic insertion/deletion
8
insertion/deletion polymorphisms
8
confirmation rate
8
rate indels
8
diallelic indels
8
indels
7
human
6
polymorphisms report
4
report identification
4

Similar Publications

Vitamin E (VE) is essential for plants and animals. Rapeseed oil is rich in α-tocopherol (α-T), which is the most bioactive form of VE in human body. This study demonstrated that VE in rapeseed seeds was mainly controlled by embryo genotype through incomplete diallel hybridization.

View Article and Find Full Text PDF

Molecular diversity and genetic potential of new maize inbred lines across varying sowing conditions in arid environment.

Sci Rep

January 2025

Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St, 117198, Moscow, Russian Federation.

Developing high-yielding and resilient maize hybrids is essential to ensure its sustainable production with the ongoing challenges of considerable shifts in global climate. This study aimed to explore genetic diversity among exotic and local maize inbred lines, evaluate their combining ability, understand the genetic mechanisms influencing ear characteristics and grain yield, and identify superior hybrids suited for timely and late sowing conditions. Seven local and exotic maize inbred lines were genotyped using SSR (Simple Sequence Repeat) markers to assess their genetic diversity.

View Article and Find Full Text PDF

Introduction: Genetic mutations in critical nodes of pulmonary epithelial function are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung diseases. The slow progression of these pathologies is often intermitted and accelerated by acute exacerbations, complex non-resolving cycles of inflammation and parenchymal damage, resulting in lung function decline and death. Excess monocyte mobilization during the initial phase of an acute exacerbation, and their long-term persistence in the lung, is linked to poor disease outcome.

View Article and Find Full Text PDF

Erucic acid, more than 2 %, in mustard seed oil is considered unhealthy as edible oil, and also anti-nutritional for human consumption. The existing mustard varieties of Bangladesh contain 40-48 % erucic acid, which is a big concern for the country's nutritional, and food security and safety. Hence, to improve the seed oil quality of the existing variety, six popular cultivars of mustard were crossed with a canola-grade line in 7 × 7 half diallel fashion, and the developed 21 F hybrids were assessed for yield contributing traits, and fatty acids composition.

View Article and Find Full Text PDF

We sought to identify genetic/immunologic contributors of type 2 diabetes (T2D) in an indigenous American community by genotyping all study participants for both high-resolution HLA-DRB1 alleles and SLC16A11 to test their risk and/or protection for T2D. These genes were selected based on independent reports that HLA-DRB1*16:02:01 is protective for T2D and that SLC16A11 associates with T2D in individuals with BMI <35 kg/m2. Here, we test the interaction of the two loci with a more complete data set and perform a BMI sensitivity test.

View Article and Find Full Text PDF