Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BC1 RNA and BC200 RNA are two non-homologous, small non-messenger RNAs (snmRNAs) that were generated, evolutionarily, quite recently by retroposition. This process endowed the RNA polymerase III transcripts with central adenosine-rich regions. Both RNAs are expressed almost exclusively in neurons, where they are transported into dendritic processes as ribonucleoprotein particles (RNPs). Here, we demonstrate with a variety of experimental approaches that poly(A)-binding protein (PABP1), a regulator of translation initiation, binds to both RNAs in vitro and in vivo. We identified the association of PABP with BC200 RNA in a tri-hybrid screen and confirmed this binding in electrophoretic mobility-shift assays and via anti-PABP immunoprecipitation of BC1 and BC200 RNAs from crude extracts, immunodepleted extracts, partially purified RNPs and cells transfected with naked RNA. Furthermore, PABP immunoreactivity was localized to neuronal dendrites. Competition experiments using variants of BC1 and BC200 RNAs demonstrated that the central adenosine-rich region of both RNAs mediates binding to PABP. These findings lend support to the hypothesis that the BC1 and BC200 RNPs are involved in protein translation in neuronal dendrites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-2836(02)00655-1DOI Listing

Publication Analysis

Top Keywords

bc1 bc200
16
polya-binding protein
8
ribonucleoprotein particles
8
bc200 rna
8
central adenosine-rich
8
bc200 rnas
8
neuronal dendrites
8
bc200
6
rnas
6
bc1
5

Similar Publications

RNA polymerase III synthesizes a wide range of noncoding RNAs shorter than 400 nucleotides in length. These RNAs are involved in protein synthesis (tRNA, 5S rRNA, and 7SL RNA), maturation, and splicing of different types of RNA (RPR, MRP RNA, and U6 snRNA), regulation of transcription (7SK RNA), replication (Y RNA), and intracellular transport (vault RNA). BC200 and BC1 RNA genes are transcribed by RNA polymerase III in neurons only where these RNAs regulate protein synthesis.

View Article and Find Full Text PDF

BC200 is a noncoding RNA elevated in a broad spectrum of tumor cells that is critical for cell viability, invasion, and migration. Overexpression studies have implicated BC200 and the rodent analog BC1 as negative regulators of translation in both cell-based and in vitro translation assays. Although these studies are consistent, they have not been confirmed in knockdown studies and direct evidence for this function is lacking.

View Article and Find Full Text PDF

The etiology of the autoimmune disorder systemic lupus erythematosus (SLE) remains poorly understood. In neuropsychiatric SLE (NPSLE), autoimmune responses against neural self-antigens find expression in neurological and cognitive alterations. SLE autoantibodies often target nucleic acids, including RNAs and specifically RNA domains with higher-order structural content.

View Article and Find Full Text PDF

BC200 is a long non-coding RNA primarily expressed in brain but aberrantly expressed in various cancers. To gain a further understanding of the function of BC200, we performed proteomic analyses of the BC200 ribonucleoprotein (RNP) by transfection of 3' DIG-labelled BC200. Protein binding partners of the functionally related murine RNA BC1 as well as a scrambled BC200 RNA were also assessed in both human and mouse cell lines.

View Article and Find Full Text PDF

The complexity of eukaryotic organisms involves the regulation of gene expression through DNA-protein, RNA-DNA, RNA-RNA, and RNA-protein interactions. The role of RNA molecules in the regulation of genes in higher species has become even more evident with the discovery that about 97% of transcription products are represented by non-protein coding RNAs (ncRNAs) including short ncRNAs and long ncRNAs (lncRNAs). In addition to the well-characterized role of ncRNAs in different physiological cellular processes, numerous studies have also indicated the crucial roles of ncRNAs in neurological diseases and cancer.

View Article and Find Full Text PDF