A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

UV-visible spectrophotometric approach to blood typing II: phenotyping of subtype A2 and weak D and whole blood analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: A recently introduced quantitative blood typing approach uses antibody-induced changes in the UV-visible spectra of blood. Changes in the blood spectra's slope, caused by RBC agglutination, are translated into a numerical agglutination index (AI). Comparing the AI value against an established threshold yields a "yes and/or no" output from which to determine the phenotype. The efficacy and flexibility of this approach with whole blood use and the ability to analyze weak D, A2, and A2B were examined.

Study Design And Methods: Two hundred randomly selected blood bank donor samples were coded and forward typed directly from whole blood by using the spectrophotometric analysis. Reverse grouping on plasma from each sample was carried out with a new modified procedure by using higher ratios of plasma to RBCs. Results were compared to typing by an FDA-cleared automated typing system. Twenty-seven weak D samples, 15 A2 and 12 A2B, were similarly analyzed from whole blood. PEG improved detection of weak D, A2 and A2B subtypes.

Results: All two hundred coded samples were accurately typed, yielding identical results to the blood bank analysis in both forward and reverse grouping. All the weak D samples and A2 and A2B samples were clearly identified, having AIs above the type threshold indicator value.

Conclusion: Spectrophotometric blood typing successfully phenotyped ABO and D in 200 whole blood samples. Reverse grouping of plasma was equally successful. The same method can identify weak D and A2 and A2B subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1537-2995.2002.00090.xDOI Listing

Publication Analysis

Top Keywords

blood
12
blood typing
12
weak a2b
12
reverse grouping
12
approach blood
8
blood bank
8
grouping plasma
8
weak samples
8
samples a2b
8
weak
6

Similar Publications