98%
921
2 minutes
20
Annexin 3 (ANX A3) represents approximately 1% of the total protein of human neutrophils and promotes tight contact between membranes of isolated specific granules in vitro leading to their aggregation. Like for other annexins, the primary molecular events of the action of this protein is likely its binding to negatively charged phospholipid membranes in a Ca(2+)-dependent manner, via Ca(2+)-binding sites located on the convex side of the highly conserved core of the molecule. The conformation and dynamics of domain III can be affected by this process, as it was shown for other members of the family. The 20 amino-acid, N-terminal segment of the protein also could be affected and also might play a role in the modulation of its binding to the membranes. The structure and dynamics of these two regions were investigated by fluorescence of the two tryptophan residues of the protein (respectively, W190 in domain III and W5 in the N-terminal segment) in the wild type and in single-tryptophan mutants. By contrast to ANX A5, which shows a closed conformation and a buried W187 residue in the absence of Ca(2+), domain III of ANX A3 exhibits an open conformation and a widely solvent-accessible W190 residue in the same conditions. This is in agreement with the three-dimensional structure of the ANX A3-E231A mutant lacking the bidentate Ca(2+) ligand in domain III. Ca(2+) in the millimolar concentration range provokes nevertheless a large mobility increase of the W190 residue, while interaction with the membranes reduces it slightly. In the N-terminal region, the W5 residue, inserted in the central pore of the protein, is weakly accessible to the solvent and less mobile than W190. Its amplitude of rotation increases upon binding of Ca(2+) and returns to its original value when interacting with membranes. Ca(2+) concentration for half binding of the W5A mutant to negatively charged membranes is approximately 0.5 mM while it increases to approximately 1 mM for the ANX A3 wild type and to approximately 3 mM for the W190 ANX A3 mutant. In addition to the expected perturbation of the W190 environment at the contact surface between the protein and the membrane bilayer, binding of the protein to Ca(2+) and to membranes modulates the flexibility of the ANX A3 hinge region at the opposite of this interface and might affect its membrane permeabilizing properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373663 | PMC |
http://dx.doi.org/10.1110/ps.4230102 | DOI Listing |
Langmuir
September 2025
Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China.
In this paper, a phosphate buffer (0.10 M, pH 7.5)--hexadecane bicontinuous microemulsion (BME) stabilized by the nonionic surfactant CE was for the first time used as the medium to investigate its effect on the electrochemical behavior of the cobaltocene redox couple ( (III)/ (II)) as electron mediator and the -mediated electroreduction of coenzyme NAD.
View Article and Find Full Text PDFSpine (Phila Pa 1976)
October 2025
Niigata Spine Surgery Center, Kameda Daiichi Hospital, Niigata, Japan.
Study Design: Prospective cohort study.
Objective: To investigate longitudinal changes in physical functional status after long corrective fusion in patients with adult spinal deformity (ASD) during 2 years of follow-up.
Background: In ASD surgery, reports assessing physical functional status in long-term observations for more than a year are lacking.
Biochem Biophys Rep
December 2025
Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.
Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).
Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.
Brain Commun
September 2025
Alzheimer's Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
Several studies implicate circadian rhythm disturbances in Alzheimer's disease. However, very little is known about how circadian rhythms are associated with Alzheimer's pathological biomarkers in older adults at early stages of the disease, and how these relationships map onto cognition. This cross-sectional study used 24-h accelerometry data to investigate the relationships between circadian rhythms, amyloid-β (Aβ), tau, and cognition in 68 older adults with objective early cognitive impairment.
View Article and Find Full Text PDFBMC Neurol
September 2025
Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
Background: Parkinson's disease (PD) is characterized by motor symptoms altering gait domains such as slow walking speed, reduced step and stride length, and increased double support time. Gait disturbances occur in the early, mild to moderate, and advanced stages of the disease in both backward walking (BW) and forward walking (FW), but are more pronounced in BW. At this point, however, no information is available about BW performance and disease stages specified using the Hoehn and Yahr (H&Y) scale.
View Article and Find Full Text PDF