A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Correlation and prediction of a large blood-brain distribution data set--an LFER study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report linear free energy relation (LFER) models of the equilibrium distribution of molecules between blood and brain, as log BB values. This method relates log BB values to fundamental molecular properties, such as hydrogen bonding capability, polarity/polarisability and size. Our best model of this form covers 148 compounds, the largest set of log BB data yet used in such a model, resulting in R(2)=0.745 and e.s.d.=0.343 after inclusion of an indicator variable for carboxylic acids. This represents rather better accuracy than a number of previously reported models based on subsets of our data. The model also reveals the factors that affect log BB: molecular size and dispersion effects increase brain uptake, while polarity/polarisability and hydrogen-bond acidity and basicity decrease it. By splitting the full data set into several randomly selected training and test sets, we conclude that such a model can predict log BB values with an accuracy of less than 0.35 log units. The method is very rapid-log BB can be calculated from structure at a rate of 700 molecules per minute on a silicon graphics O(2).

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0223-5234(01)01269-7DOI Listing

Publication Analysis

Top Keywords

log values
12
data model
8
log
6
correlation prediction
4
prediction large
4
large blood-brain
4
blood-brain distribution
4
data
4
distribution data
4
data set--an
4

Similar Publications