Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this investigation was to evaluate the osteoinductive property of autogenous demineralized dentin matrix (ADDM) on experimental surgical bone defects in the parietal bone of rabbits using the guided bone regeneration (GBR) technique incorporating human amniotic membrane (HAM). Thirty-six rabbits were divided into 2 groups, HAM and ADDM+HAM. It was possible to conclude that HAM did not interfere with bone repair and was resorbed. Slices of ADDM induced direct bone formation and were incorporated by the newly formed bone tissue and remodeled. The bone defects healed faster in the ADDM+HAM group than in the group with HAM only.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bone defects
12
bone
9
osteoinductive property
8
property autogenous
8
autogenous demineralized
8
demineralized dentin
8
dentin matrix
8
surgical bone
8
human amniotic
8
amniotic membrane
8

Similar Publications

This study aimed to histomorphometrically evaluate the effect of guided bone regeneration (GBR) and two implant surfaces on the thickness and height of newly formed bone in dehiscence defects around titanium implants. Three premolars and the first bilateral molar were extracted from ten adult mongrel dogs, and 40 buccal bone dehiscences measuring 5 mm in height and 4 mm in width were created using a University of North Carolina (UNC) periodontal probe to confirm the dimensions. Forty implants were randomly assigned to one of four groups: oxidized implant surfaces (OIS, n = 10), turned/machined implant surfaces (TIS, n = 10), OIS + GBR (n = 10), and TIS + GBR (n = 10).

View Article and Find Full Text PDF

Background: Choosing the appropriate implants for reconstruction in revision TKA is essential for long-term fixation. While cones and augments are routinely utilized to address tibial defects, the effect of augment location and size on the biomechanical stability of revision TKA constructs and the indications for the use of metaphyseal cones are not known.

Questions/purposes: Is the risk of cement-implant debonding of revision TKA constructs impacted by the thickness and location (medial versus bicompartmental) of tibial augments and the presence of metaphyseal cones during (1) a demanding daily activity like stair ascent and (2) torsional loads?

Methods: Under institutional review board approval, we developed patient-specific finite-element models of revision TKA from four patients (three males and one female, ages 50 to 80 years, BMI 27 to 37 kg/m2) who underwent two-stage revision and had a CT scan with no metal artifact after first-stage implant removal.

View Article and Find Full Text PDF

Recent Progress of 3D Printing Bioceramic Scaffolds for Bone Regeneration.

Tissue Eng Part B Rev

September 2025

The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.

The reconstruction of critical-sized bone defects remains a challenging clinical problem. At present, the implantation of autogenous and allogeneic grafts is the main clinical treatment strategy but faces some drawbacks, such as inadequate source, donor site-related complications, and immune rejection, driving researchers to develop artificial bone substitutes based on distinct materials and fabrication technologies. Among the bone substitutes, bioceramic-based substitutes exhibit a remarkable biocompatibility, which can also be designed to degrade concomitantly with the formation of new bone.

View Article and Find Full Text PDF

Background: Bone marrow (BM) lesion differentiation remains challenging, and quantitative magnetic resonance imaging (MRI) may enhance accuracy over conventional methods. We evaluated the diagnostic value and inter-reader reliability of Dixon-based signal drop (%drop) and fat fraction percentage (%fat) as adjuncts to existing protocols.

Materials And Methods: In this prospective two-center study, 172 patients with BM signal abnormalities underwent standardized 1.

View Article and Find Full Text PDF

Posterior ankle impingement (PAI) is the result of bony or soft tissue abnormalities in the posterior region of the ankle directly behind the talus. Os trigonum, an accessory bone resulting from failure of complete mineralization, and the Stieda process, an elongated process of the posterolateral talus, are the most common bony abnormalities. The flexor hallucis longus tendon travels between the posterolateral and posteromedial tubercles of the talus in a fibro-osseous sheath.

View Article and Find Full Text PDF