Human RNA-specific adenosine deaminase (ADAR1) gene specifies transcripts that initiate from a constitutively active alternative promoter.

Gene

Department of Molecular, Cellular, and Developmental Biology and Interdepartmental Graduate Program of Biochemistry and Molecular Biology, University of California, Santa Barbara, CA 93106, USA.

Published: November 2000


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The human ADAR1 gene specifies two size forms of RNA-specific adenosine deaminase, an interferon (IFN) inducible approximately 150 kDa protein and a constitutively expressed N-terminally truncated approximately 110 kDa protein, encoded by transcripts with alternative exon 1 structures that initiate from different promoters. We have now identified a new class of ADAR1 transcripts, with alternative 5'-structures and a deduced coding capacity for the approximately 110 kDa protein. Nuclease protection and 5'-rapid amplification of cDNA ends (5'-RACE) revealed five major ADAR1 transcriptional start sites that mapped within the previously identified and unusually large (approximately 1.6 kb) exon 2. These transcripts were observed with RNA from human amnion U cells and placenta tissue. Their abundance was not affected by IFN-alpha treatment of U cells in culture. Transfection analysis identified a functional promoter within human genomic DNA that mapped to the proximal exon 2 region of the ADAR1 gene. Promoter activity was not affected by IFN. These results suggest that transcripts encoding the constitutively expressed approximately 110 kDa form of the ADAR1 editing enzyme are initiated from multiple promoters, including one within exon 2, that collectively contribute to the high basal level of deaminase activity observed in nuclei of mammalian cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(00)00368-1DOI Listing

Publication Analysis

Top Keywords

adar1 gene
12
kda protein
12
110 kda
12
rna-specific adenosine
8
adenosine deaminase
8
gene specifies
8
promoter human
8
constitutively expressed
8
transcripts alternative
8
adar1
6

Similar Publications

Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.

View Article and Find Full Text PDF

Epitranscriptomic modifications regulate gene expression and have been implicated in cancer, including breast cancer. Using the SCAN-B cohort, we analyzed 49 messenger RNA modification regulators (mRMPs) across breast cancer subtypes. In the basal subtype, we found significant overexpression of mA readers (IGF2BP1-3), mC regulators (NSUN5, ALYREF, YBX1, YBX2), pseudouridine [PUS1, MARS (or MetRS), RPUSD2], and RNA editing enzymes [APOBEC3A (A3A), A3G, ADAR1], all linked to poor survival.

View Article and Find Full Text PDF

Nanobioreactor detection of space-associated hematopoietic stem and progenitor cell aging.

Cell Stem Cell

September 2025

Sanford Stem Cell Institute Integrated Space Stem Cell Orbital Research (ISSCOR) Center, Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address:

Human hematopoietic stem and progenitor cell (HSPC) fitness declines following exposure to stressors that reduce survival, dormancy, telomere maintenance, and self-renewal, thereby accelerating aging. While previous National Aeronautics and Space Administration (NASA) research revealed immune dysfunction in low-earth orbit (LEO), the impact of spaceflight on human HSPC aging had not been studied. To study HSPC aging, our NASA-supported Integrated Space Stem Cell Orbital Research (ISSCOR) team developed bone marrow niche nanobioreactors with lentiviral bicistronic fluorescent, ubiquitination-based cell-cycle indicator (FUCCI2BL) reporter for real-time HSPC tracking in artificial intelligence (AI)-driven CubeLabs.

View Article and Find Full Text PDF

Post-transcriptional RNA modifications, such as N6-methyladenosine (m6A) methylation and adenosine to inosine (A-to-I) editing, are critical regulators of hematopoietic stem cell (HSC) self-renewal and differentiation, yet their precise contributions to malignant transformation are not fully elucidated. In this study, we uncovered the epitranscriptomic landscape caused by knockdown of genes from the methyltransferase (METTL)-family in hematopoietic stem and progenitor cells (HSPCs). We identified both converging and distinct roles of METTL3 and METTL14, known members of the m6A writer complex, as well as orphan gene METTL13.

View Article and Find Full Text PDF

RNA is a fundamental biological macromolecule that undergoes several post-transcriptional modifications, including adenosine to inosine (A-to-I) editing by adenosine deaminases acting on RNA (ADARs). These essential enzymes catalyze the conversion of A-to-I in double-stranded RNA (dsRNA) molecules, influencing RNA stability, splicing, and translation, all of which impact various cellular functions. More recently, RNA editing has emerged as a pivotal mechanism in cancer biology, where ADARs, primarily ADAR1 and ADAR2, exert context-dependent roles as either oncogenic drivers or tumor suppressors.

View Article and Find Full Text PDF