Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A number of products including apocarotenal, epoxycarotenal, apocarotenone, and epoxycarotenone generated by lipoxygenase (LOX) catalyzed co-oxidation of beta-carotene have been tentatively identified through the use of GC/MS and HPLC combined with photodiode array detection. Because of the large number of high molecular weight products detected and their probable chemical structures, a co-oxidation mechanism is proposed that involves random attack along the alkene chain of the carotenoid by a LOX-generated linoleoylperoxyl radical. It is suggested that a direct release from the enzyme of the radical, which initiates the co-oxidation of beta-carotene, is greater for pea LOX-3 than for pea LOX-2 or soybean LOX-1. It is proposed that further products may be formed by free radical propagated reactions and that the formation of 1,10- and 1,14-dicarbonyl compounds may arise by secondary oxidation of the primary products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf9901690 | DOI Listing |