The physical mechanism of microbial motion near solid-liquid interfaces is crucial for understanding various biological phenomena and developing ecological applications. However, limited works have been conducted on the swimming behavior of C.reinhardtii, a typical "puller" type cell, near solid surfaces, particularly with varying and conflicting experimental observations.
View Article and Find Full Text PDFFerrofluids are stable colloidal dispersions of magnetic nanoparticles in carrier liquids. Their combination of magnetic and fluidic characteristics not only inspires fundamental inquiries into forms and functions of matter but also enables diverse applications ranging from sealants and coolants in mechanical devices to active components in smart materials and soft robots. Spurred by such fundamental and applied interests, a growing need for easy-to-synthesize, high-quality ferrofluid exists.
View Article and Find Full Text PDFGold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were constructed by encapsulating the water-dispersible L-Cys-AuNCs into a ZIF-8 via Zn-triggered growth strategy without high temperature and pressure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2018
Although the motility of the flagellated bacteria, , has been widely studied, the effect of viscosity on swimming speed remains controversial. The swimming mode of wild-type is often idealized as a run-and-tumble sequence in which periods of swimming at a constant speed are randomly interrupted by a sudden change of direction at a very low speed. Using a tracking microscope, we follow cells for extended periods of time in Newtonian liquids of varying viscosity and find that the swimming behavior of a single cell can exhibit a variety of behaviors, including run and tumble and "slow random walk" in which the cells move at a relatively low speed.
View Article and Find Full Text PDF