Publications by authors named "Zaid W El-Husseini"

Background: Cigarette smoking has a significant impact on global health. Although cessation has positive health benefits, some molecular changes to intercellular communications may persist in the lung. In this study we created a framework to generate hypotheses by predicting altered cell-cell communication in smoker lungs using single-cell and spatial transcriptomic data.

View Article and Find Full Text PDF

Asthma is a genetically complex inflammatory airway disease associated with more than 200 SNPs. However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.

View Article and Find Full Text PDF

Background: Asthma is stratified into type 2-high and type 2-low inflammatory phenotypes. Limited success has been achieved in developing drugs that target type 2-low inflammation. Previous studies have linked IL-6 signaling to severe asthma.

View Article and Find Full Text PDF

Introduction: Asthma is a complex, polygenic, heterogenous inflammatory disease. Recently, we generated a list of 128 independent single nucleotide polymorphisms (SNPs) associated with asthma in genome-wide association studies. However, it is unknown if asthma SNPs are associated with specific asthma-associated traits such as high eosinophil counts, atopy, and airway obstruction, revealing molecular endotypes of this disease.

View Article and Find Full Text PDF

Asthma is an inflammatory airway disease that is estimated to affect 339 million people globally. The symptoms of about 5-10% of patients with asthma are not adequately controlled with current therapy, and little success has been achieved in developing drugs that target the underlying mechanisms of asthma rather than suppressing symptoms. Over the past 3 years, well powered genetic studies of asthma have increased the number of independent asthma-associated genetic loci to 128.

View Article and Find Full Text PDF