Ferns are essential for understanding plant evolution; however, their large and intricate genomes have kept their genetic landscape largely unexplored, with only a few genomes sequenced and limited transcriptomic data available. To bridge this gap, we generated extensive RNA-sequencing data across various organs from 22 representative fern species, resulting in high-quality transcriptome assemblies. These data enabled us to construct a time-calibrated phylogeny for ferns, encompassing all major clades, which revealed numerous instances of whole-genome duplication.
View Article and Find Full Text PDFThe filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of and one strain of ) and generated chromosome-scale assemblies for all strains of the emerging model system .
View Article and Find Full Text PDF