High-grade serous ovarian carcinoma (HGSOC) is a molecularly heterogeneous and lethal malignancy, with late-stage diagnosis contributing to high risk of recurrence and poor clinical outcomes. Although homologous recombination (HR) deficiency and retinoblastoma gene (RB1) expression have been implicated in prognosis, their combined role in shaping tumor biology and survival outcomes is not well defined. To investigate the relationship between HR status and RB1 expression and explore their potential as a combined prognostic marker, we analyzed data from two cohorts: (1) 272 HGSOC cases from The Cancer Genome Atlas (TCGA) with RB1 mRNA expression data and HR status previously annotated by Takaya et al.
View Article and Find Full Text PDFBackground: Molecular profiling is quickly becoming standard for patients with advanced cancer, with an increasing number of biomarker-directed therapies and innovative precision diagnostics available. However, with the expansion of relevant biomarkers, clinicians often face challenges obtaining optimal detection from limited tumor tissue. Here, we present biomarker detection rates from comprehensive genomic and immune profiling (CGIP) performed as a component of routine clinical care using a multi-modal testing strategy.
View Article and Find Full Text PDFIntroduction: , , and gene fusions are rare oncogenic driver alterations found in diverse tumor types of adults and children. They are clinically important biomarkers as tumors harboring these genomic alterations have high response rates to targeted therapy. Routine testing for fusions and treatment with TRK inhibitors has been recommended in multiple tumor types; however, differences between testing technologies used for detecting fusions can result in variable likelihoods of identification.
View Article and Find Full Text PDFGrowing evidence indicates that persons with Parkinson disease (PD), have a unique composition of indigenous gut microbes. Given the long prodromal or pre-diagnosed period, longitudinal studies of the human and rodent gut microbiome before symptomatic onset and for the duration of the disease are currently lacking. PD is partially characterized by the accumulation of the protein α-synuclein (α-syn) into insoluble aggregates, in both the central and enteric nervous systems.
View Article and Find Full Text PDFIntroduction: Matching patients to an effective targeted therapy or immunotherapy is a challenge for advanced and metastatic non-small cell lung cancer (NSCLC), especially when relying on assays that test one marker at a time. Unlike traditional single marker tests, comprehensive genomic profiling (CGP) can simultaneously assess NSCLC tumors for hundreds of genomic biomarkers and markers for immunotherapy response, leading to quicker and more precise matches to therapeutics.
Methods: In this study, we performed CGP on 7,606 patients with advanced or metastatic NSCLC using the Illumina TruSight Oncology 500 (TSO 500) CGP assay to show its coverage and utility in detecting known and novel features of NSCLC.
Clinical management of non-small cell lung cancer (NSCLC) requires accurate identification of tumor-specific genetic alterations to inform treatment options. Historically, providers have relied on single-gene testing (SGT) for actionable variants due to a perception of cost-effectiveness and/or efficient turnaround time compared to next-generation sequencing (NGS). However, not all actionable variants may be evaluated through SGT modalities, and an SGT approach can exhaust valuable tissue needed for more comprehensive analyses.
View Article and Find Full Text PDFDisparities in cancer diagnosis, treatment, and outcomes based on self-identified race and ethnicity (SIRE) are well documented, yet these variables have historically been excluded from clinical research. Without SIRE, genetic ancestry can be inferred using single-nucleotide polymorphisms (SNPs) detected from tumor DNA using comprehensive genomic profiling (CGP). However, factors inherent to CGP of tumor DNA increase the difficulty of identifying ancestry-informative SNPs, and current workflows for inferring genetic ancestry from CGP need improvements in key areas of the ancestry inference process.
View Article and Find Full Text PDFRecent strides in understanding the molecular underpinnings of head and neck cancers have sparked considerable interest in identifying precise biomarkers that can enhance prognostication and enable personalized treatment strategies. Immunotherapy has particularly revolutionized the therapeutic landscape for head and neck squamous cell carcinoma, offering new avenues for treatment. This review comprehensively examines the application and limitations of the established and emerging/novel biomarkers for head and neck squamous cell carcinoma.
View Article and Find Full Text PDFIntroduction: Younger patients with non-small cell lung cancer (NSCLC) (<50 years) represent a significant patient population with distinct clinicopathological features and enriched targetable genomic alterations compared to older patients. However, previous studies of younger NSCLC suffer from inconsistent findings, few studies have incorporated sex into their analyses, and studies targeting age-related differences in the tumor immune microenvironment are lacking.
Methods: We performed a retrospective analysis of 8,230 patients with NSCLC, comparing genomic alterations and immunogenic markers of younger and older patients while also considering differences between male and female patients.
Introduction: Tissue-based broad molecular profiling of guideline-recommended biomarkers is advised for the therapeutic management of patients with non-small cell lung cancer (NSCLC). However, practice variation can affect whether all indicated biomarkers are tested. We aimed to evaluate the impact of common single-gene testing (SGT) on subsequent comprehensive genomic profiling (CGP) test outcomes and results in NSCLC.
View Article and Find Full Text PDFNPJ Parkinsons Dis
December 2023
Parkinson's disease is the fastest-growing neurologic disease with seemingly no means of prevention. Intrinsic risk factors (age, sex, and genetics) are inescapable, but environmental factors are not. We identified repeated blows to the head in sports/combat as a potential new risk factor.
View Article and Find Full Text PDFParkinson's disease is the fastest growing neurologic disease with seemingly no means for prevention. Intrinsic risk factors (age, sex, genetics) are inescapable, but environmental factors are not. We studied population attributable fraction and estimated fraction of PD that could be reduced if modifiable risk factors were eliminated.
View Article and Find Full Text PDFParkinson's disease (PD) may start in the gut and spread to the brain. To investigate the role of gut microbiome, we conducted a large-scale study, at high taxonomic resolution, using uniform standardized methods from start to end. We enrolled 490 PD and 234 control individuals, conducted deep shotgun sequencing of fecal DNA, followed by metagenome-wide association studies requiring significance by two methods (ANCOM-BC and MaAsLin2) to declare disease association, network analysis to identify polymicrobial clusters, and functional profiling.
View Article and Find Full Text PDFMicrobial alterations within the gut microbiome appear to be a common feature of individuals with Parkinson's disease (PD), providing further evidence for the role of the gut-brain axis in PD development. As a major site of contact with the environment, questions have emerged surrounding the cause and effect of alterations to the gut microbiome by environmental contaminants associated with PD risk, such as pesticides, metals, and organic solvents. Recent data from our lab shows that ingestion of the industrial byproduct and environmental pollutant trichloroethylene (TCE) induces key Parkinsonian pathology within aged rats, including the degeneration of dopaminergic neurons, α-synuclein accumulation, neuroinflammation, and endolysosomal deficits.
View Article and Find Full Text PDFNPJ Parkinsons Dis
August 2021
The causes of complex diseases remain an enigma despite decades of epidemiologic research on environmental risks and genome-wide studies that have uncovered tens or hundreds of susceptibility loci for each disease. We hypothesize that the microbiome is the missing link. Genetic studies have shown that overexpression of alpha-synuclein, a key pathological protein in Parkinson's disease (PD), can cause familial PD and variants at alpha-synuclein locus confer risk of idiopathic PD.
View Article and Find Full Text PDFBackground: Testing for differential abundance of microbes in disease is a common practice in microbiome studies. Numerous differential abundance (DA) testing methods exist and range from traditional statistical tests to methods designed for microbiome data. Comparison studies of DA testing methods have been performed, but none performed on microbiome datasets collected for the study of real, complex disease.
View Article and Find Full Text PDFTo study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10) threshold.
View Article and Find Full Text PDFIn Parkinson's disease (PD), gastrointestinal features are common and often precede the motor signs. Braak and colleagues proposed that PD may start in the gut, triggered by a pathogen, and spread to the brain. Numerous studies have examined the gut microbiome in PD; all found it to be altered, but found inconsistent results on associated microorganisms.
View Article and Find Full Text PDFParkinson's disease (PD) has classically been defined as a movement disorder, in which motor symptoms are explained by the aggregation of alpha-synuclein (α-syn) and subsequent death of dopaminergic neurons of the substantia nigra pars compacta (SNpc). More recently, the multisystem effects of the disease have been investigated, with the immune system being implicated in a number of these processes in the brain, the blood, and the gut. In this review, we highlight the dysfunctional immune system found in both human PD and animal models of the disease, and discuss how genetic risk factors and risk modifiers are associated with pro-inflammatory immune responses.
View Article and Find Full Text PDFObjective: To identify modifiers of age at diagnosis of Parkinson disease (PD).
Methods: Genome-wide association study (GWAS) included 1,950 individuals with PD from the NeuroGenetics Research Consortium (NGRC) study. Replication was conducted in the Parkinson's, Genes and Environment study, including 209 prevalent (PAGE) and 517 incident (PAGE) PD cases.
Background: There is mounting evidence for a connection between the gut and Parkinson's disease (PD). Dysbiosis of gut microbiota could explain several features of PD.
Objective: The objective of this study was to determine if PD involves dysbiosis of gut microbiome, disentangle effects of confounders, and identify candidate taxa and functional pathways to guide research.