Publications by authors named "Zachary D Miles"

RNA is subject to a multitude of different chemical modifications that collectively represent the epitranscriptome. Individual RNA modifications including N6-methyladenosine (mA) on mRNA play essential roles in the posttranscriptional control of gene expression. Recent technological advances have enabled the transcriptome-wide mapping of certain RNA modifications, to reveal their broad relevance and characteristic distribution patterns.

View Article and Find Full Text PDF

Vanadium-dependent haloperoxidases (VHPOs) from bacteria differ from their counterparts in fungi, macroalgae, and other bacteria by catalyzing organohalogenating reactions with strict regiochemical and stereochemical control. While this group of enzymes collectively uses hydrogen peroxide to oxidize halides for incorporation into electron-rich organic molecules, the mechanism for the controlled transfer of highly reactive chloronium ions in the biosynthesis of napyradiomycin and merochlorin antibiotics sets the vanadium-dependent chloroperoxidases apart. Here we report high-resolution crystal structures of two homologous VHPO family members associated with napyradiomycin biosynthesis, NapH1 and NapH3, that catalyze distinctive chemical reactions in the construction of meroterpenoid natural products.

View Article and Find Full Text PDF

The biosynthetic route to the napyradiomycin family of bacterial meroterpenoids has been fully described 32 years following their original isolation and 11 years after their gene cluster discovery. The antimicrobial and cytotoxic natural products napyradiomycins A1 and B1 are produced using three organic substrates (1,3,6,8-tetrahydroxynaphthalene, dimethylallyl pyrophosphate, and geranyl pyrophosphate), and catalysis via five enzymes: two aromatic prenyltransferases (NapT8 and T9); and three vanadium dependent haloperoxidase (VHPO) homologues (NapH1, H3, and H4). Building upon the previous characterization of NapH1, H3, and T8, we herein describe the initial (NapT9, H1) and final (NapH4) steps required for napyradiomycin construction.

View Article and Find Full Text PDF

Oceanic harmful algal blooms of diatoms produce the potent mammalian neurotoxin domoic acid (DA). Despite decades of research, the molecular basis for its biosynthesis is not known. By using growth conditions known to induce DA production in , we implemented transcriptome sequencing in order to identify DA biosynthesis genes that colocalize in a genomic four-gene cluster.

View Article and Find Full Text PDF

The naphterpins and marinones are naphthoquinone meroterpenoids with an unusual aromatic oxidation pattern that is biosynthesized from 1,3,6,8-tetrahydroxynaphthalene (THN). We propose that cryptic halogenation of THN derivatives by vanadium-dependent chloroperoxidase (VCPO) enzymes is key to this biosynthetic pathway, despite the absence of chlorine in these natural products. This speculation inspired a total synthesis to mimic the naphterpin/marinone biosynthetic pathway.

View Article and Find Full Text PDF

Vanadium-dependent haloperoxidases (VHPOs) are fascinating enzymes that facilitate electrophilic halogen incorporation into electron-rich substrates, simply requiring vanadate, a halide source, and cosubstrate hydrogen peroxide for activity. Initially characterized in fungi and red algae, VHPOs were long believed to have limited regio-, chemo-, and enantioselectivity in the production of halogenated metabolites. However, the recent discovery of homologues in the biosynthetic gene clusters of the stereoselectively halogenated meroterpenoids from marine-derived Streptomyces bacteria has revised this paradigm.

View Article and Find Full Text PDF

Bacterial meroterpenoids constitute an important class of natural products with diverse biological properties and therapeutic potential. The biosynthetic logic for their production is unknown and defies explanation via classical biochemical paradigms. A large subgroup of naphthoquinone-based meroterpenoids exhibits a substitution pattern of the polyketide-derived aromatic core that seemingly contradicts the established reactivity pattern of polyketide phenol nucleophiles and terpene diphosphate electrophiles.

View Article and Find Full Text PDF

Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution.

View Article and Find Full Text PDF

Queuosine (Q) was discovered in the wobble position of a transfer RNA (tRNA) 47 years ago, yet the final biosynthetic enzyme responsible for Q-maturation, epoxyqueuosine (oQ) reductase (QueG), was only recently identified. QueG is a cobalamin (Cbl)-dependent, [4Fe-4S] cluster-containing protein that produces the hypermodified nucleoside Q in situ on four tRNAs. To understand how QueG is able to perform epoxide reduction, an unprecedented reaction for a Cbl-dependent enzyme, we have determined a series of high resolution structures of QueG from Bacillus subtilis Our structure of QueG bound to a tRNA anticodon stem loop shows how this enzyme uses a HEAT-like domain to recognize the appropriate anticodons and position the hypermodified nucleoside into the enzyme active site.

View Article and Find Full Text PDF

Queuosine is a hypermodified nucleoside present in the wobble position of tRNAs with a 5'-GUN-3' sequence in their anticodon (His, Asp, Asn, and Tyr). The 7-deazapurine core of the base is synthesized de novo in prokaryotes from guanosine 5'-triphosphate in a series of eight sequential enzymatic transformations, the final three occurring on tRNA. Epoxyqueuosine reductase (QueG) catalyzes the final step in the pathway, which entails the two-electron reduction of epoxyqueuosine to form queuosine.

View Article and Find Full Text PDF

6-Pyruvoyltetrahydropterin synthase (PTPS) homologs in both mammals and bacteria catalyze distinct reactions using the same 7,8-dihydroneopterin triphosphate substrate. The mammalian enzyme converts 7,8-dihydroneopterin triphosphate to 6-pyruvoyltetrahydropterin, whereas the bacterial enzyme catalyzes the formation of 6-carboxy-5,6,7,8-tetrahydropterin. To understand the basis for the differential activities we determined the crystal structure of a bacterial PTPS homolog in the presence and absence of various ligands.

View Article and Find Full Text PDF

Transfer RNA is one of the most richly modified biological molecules. Biosynthetic pathways that introduce these modifications are underexplored, largely because their absence does not lead to obvious phenotypes under normal growth conditions. Queuosine (Q) is a hypermodified base found in the wobble positions of tRNA Asp, Asn, His, and Tyr from bacteria to mankind.

View Article and Find Full Text PDF