Publications by authors named "Zachary D Chiang"

Microscopy and genomics are used to characterize cell function, but approaches to connect the two types of information are lacking, particularly at subnuclear resolution. Here, we describe expansion in situ genome sequencing (ExIGS), a technology that enables sequencing of genomic DNA and super-resolution localization of nuclear proteins in single cells. Applying ExIGS to progeria-derived fibroblasts revealed that lamin abnormalities are linked to hotspots of aberrant chromatin regulation that may erode cell identity.

View Article and Find Full Text PDF
Article Synopsis
  • Microscopy and genomics both help in studying cell functions, but they struggle to connect insights at a detailed level within the cell nucleus.
  • A new technology called expansion in situ genome sequencing (ExIGS) allows for detailed sequencing of genomic DNA and precise localization of nuclear proteins in single cells.
  • Using ExIGS on fibroblast cells from a person with Hutchinson-Gilford progeria syndrome revealed that abnormalities in a protein called lamin are linked to unusual chromatin organization, potentially destabilizing cell identity and altering gene regulation in various diseases.
View Article and Find Full Text PDF

The state and behaviour of a cell can be influenced by both genetic and environmental factors. In particular, tumour progression is determined by underlying genetic aberrations as well as the makeup of the tumour microenvironment. Quantifying the contributions of these factors requires new technologies that can accurately measure the spatial location of genomic sequence together with phenotypic readouts.

View Article and Find Full Text PDF

ATAC-seq is a widely-applied assay used to measure genome-wide chromatin accessibility; however, its ability to detect active regulatory regions can depend on the depth of sequencing coverage and the signal-to-noise ratio. Here we introduce AtacWorks, a deep learning toolkit to denoise sequencing coverage and identify regulatory peaks at base-pair resolution from low cell count, low-coverage, or low-quality ATAC-seq data. Models trained by AtacWorks can detect peaks from cell types not seen in the training data, and are generalizable across diverse sample preparations and experimental platforms.

View Article and Find Full Text PDF

Understanding genome organization requires integration of DNA sequence and three-dimensional spatial context; however, existing genome-wide methods lack either base pair sequence resolution or direct spatial localization. Here, we describe in situ genome sequencing (IGS), a method for simultaneously sequencing and imaging genomes within intact biological samples. We applied IGS to human fibroblasts and early mouse embryos, spatially localizing thousands of genomic loci in individual nuclei.

View Article and Find Full Text PDF