Publications by authors named "Yuya A Lin"

Cesium carbonate promoted direct amidation of unactivated esters with amino alcohols was developed without the use of transition-metal catalysts and coupling reagents. This method enabled the synthesis of several serine-containing oligopeptides and benzamide derivatives with yields up to 90%. The methodology proceeds under mild reaction conditions and exhibits no racemization for most naturally occurring amino acid substrates.

View Article and Find Full Text PDF

The Brønsted acidity of graphene oxide (GO) materials has shown promising activity in organic synthesis. However, roles and functionality of Lewis acid sites remain elusive. Herein, we reported a carbocatalytic approach utilizing both Brønsted and Lewis acid sites in GOs as heterogeneous promoters in a series of multicomponent synthesis of triazoloquinazolinone compounds.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how laccase from E. coli affects the biotransformation of TNT and the resulting metabolites.
  • The research created different E. coli strains to evaluate laccase's impact on TNT degradation efficiency, metabolite variety, and toxicity.
  • Findings indicated that higher laccase levels correlated with increased diversity and toxicity of TNT metabolites, suggesting the importance of laccase in microbial TNT remediation efforts.
View Article and Find Full Text PDF

Olefin cross-metathesis (CM) is a viable reaction for the modification of alkene-containing proteins. Although allyl sulfide or selenide side-chain motifs in proteins can critically enhance the rate of CM reactions, no efficient method for their site-selective genetic incorporation into proteins has been reported to date. Here, through the systematic evaluation of olefin-bearing unnatural amino acids for their metabolic incorporation, we have discovered S-allylhomocysteine (Ahc) as a genetically encodable Met analogue that is not only processed by translational cellular machinery but also a privileged CM substrate residue in proteins.

View Article and Find Full Text PDF

Histidine-containing peptides are valuable therapeutic agents for a treatment of neurodegenerative diseases. However, the synthesis of histidine-containing peptides is not trivial due to the potential of imidazole sidechain of histidine to act as a nucleophile if unprotected. A peptide ligation method utilizing the imidazole sidechain of histidine has been developed.

View Article and Find Full Text PDF

A copper(I)-mediated denitrogenative reaction has been successfully developed for the preparation of cyclic tetrapeptides. The key reactive intermediate, ketenimine, triggers intramolecular cyclization through attack of the terminal amine group to generate an internal β-amino acid with an amidine linkage. The chemistry developed herein provides a new synthetic route for the preparation of cyclic α β-tetrapeptide analogues that contain important biological properties and results in rich structural information being obtained for conformational studies.

View Article and Find Full Text PDF

Cross-metathesis (CM) has recently emerged as a viable strategy for protein modification. Here, efficient protein CM has been demonstrated through biomimetic chemical access to Se-allyl-selenocysteine (Seac), a metathesis-reactive amino acid substrate, via dehydroalanine. On-protein reaction kinetics reveal a rapid reaction with rate constants of Seac-mediated-CM comparable or superior to off-protein rates of many current bioconjugations.

View Article and Find Full Text PDF

Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins.

View Article and Find Full Text PDF

Olefin metathesis has recently emerged as a viable reaction for chemical protein modification. The scope and limitations of olefin metathesis in bioconjugation, however, remain unclear. Herein we report an assessment of various factors that contribute to productive cross-metathesis on protein substrates.

View Article and Find Full Text PDF

Multiple, complementary methods are reported for the chemical conversion of cysteine to S-allyl cysteine on protein surfaces, a useful transformation for the exploration of olefin metathesis on proteins.

View Article and Find Full Text PDF

For a reaction to be generally useful for protein modification, it must be site-selective and efficient under conditions compatible with proteins: aqueous media, low to ambient temperature, and at or near neutral pH. To engineer a reaction that satisfies these conditions is not a simple task. Olefin metathesis is one of most useful reactions for carbon-carbon bond formation, but does it fit these requirements? This minireview is an account of the development of olefin metathesis for protein modification.

View Article and Find Full Text PDF

Chemical modification of proteins is a rapidly expanding area in chemical biology. Selective installation of biochemical probes has led to a better understanding of natural protein modification and macromolecular function. In other cases such chemical alterations have changed the protein function entirely.

View Article and Find Full Text PDF

Allyl sulfides undergo efficient cross-metathesis in aqueous media with Hoveyda-Grubbs second generation catalyst 1. The high reactivity of allyl sulfides in cross-metathesis was exploited in the first examples of cross-metathesis on a protein surface. S-Allylcysteine was incorporated chemically into the protein, providing the requisite allyl sulfide handle.

View Article and Find Full Text PDF