The framework of partial information decomposition (PID) unveils complex nonlinear interactions in network systems by dissecting the mutual information (MI) between a target variable and several source variables. PID measures have been formulated mostly for discrete variables, with only recent extensions to continuous systems. In the case of mixed variables where the target is discrete and the sources are continuous, the application of existing PID schemes requires the manipulation of the data generated by the analyzed system, thus altering their information content.
View Article and Find Full Text PDFHeart Rate Variability (HRV) is a key metric for assessing cardiovascular health and autonomic nervous system function. The increasing use of wearable devices for continuous health monitoring during daily-life activities presents significant challenges, since the acquired signals are often noisy or affected by artifacts, resulting in a low signal-to-noise ratio (SNR). This study aims to investigate how electrocardiographic (ECG) noise affects the accuracy of ultra-short term (∼ 2 min) HRV analysis.
View Article and Find Full Text PDFFunctional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique that measures brain hemodynamic activity by detecting changes in oxyhemoglobin and deoxyhemoglobin concentrations using light in the near-infrared spectrum. This study aims to provide a comprehensive characterization of fNIRS signals acquired with a prototypal continuous-wave fNIRS device during a breath-holding task, to evaluate the impact of respiratory activity on scalp hemodynamics within the framework of Network Physiology. To this end, information-theoretic and spectral analysis methods were applied to characterize the dynamics of fNIRS signals.
View Article and Find Full Text PDFObjective: Understanding brain dynamics during motor tasks is a significant challenge in neuroscience, often limited to studying pairwise interactions. This study provides a comprehensive hierarchical characterization of node-specific, pairwise and higher-order interactions within the human brain's motor network during handgrip task execution.
Methods: The brain source activity was reconstructed from scalp EEG signals of ten healthy subjects performing a motor task, identifying five brain regions within the contralateral and ipsilateral motor networks.
IEEE Open J Eng Med Biol
March 2024
The network representation is becoming increasingly popular for the description of cardiovascular interactions based on the analysis of multiple simultaneously collected variables. However, the traditional methods to assess network links based on pairwise interaction measures cannot reveal high-order effects involving more than two nodes, and are not appropriate to infer the underlying network topology. To address these limitations, here we introduce a framework which combines the assessment of high-order interactions with statistical inference for the characterization of the functional links sustaining physiological networks.
View Article and Find Full Text PDFThe objective was to compare the symptom networks of long-COVID and chronic fatigue syndrome (CFS) in conjunction with other theoretically relevant diagnoses in order to provide insight into the etiology of medically unexplained symptoms (MUS). This was a cross-sectional comparison of questionnaire items between six groups identified by clinical diagnosis. All participants completed a 65-item psychological and somatic symptom questionnaire (GSQ065).
View Article and Find Full Text PDFThe increasing availability of time series data depicting the evolution of physical system properties has prompted the development of methods focused on extracting insights into the system behavior over time, discerning whether it stems from deterministic or stochastic dynamical systems. Surrogate data testing plays a crucial role in this process by facilitating robust statistical assessments. This ensures that the observed results are not mere occurrences by chance, but genuinely reflect the inherent characteristics of the underlying system.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Annu Int Conf IEEE Eng Med Biol Soc
July 2023
The trend toward personalized medicine necessitates drawing conclusions from descriptive indexes of physiopathological states estimated from individual recordings of biomedical signals, using statistical analyses that focus on subject-specific differences between experimental conditions. In this context, the present work introduces an approach to assess functional connectivity in brain and physiologic networks by pairwise information-theoretic measures of coupling between signals, whose significance and variations between conditions are statistically validated on a single-subject basis through the use of surrogate and bootstrap data analyses. The approach is illustrated on single-subject recordings of (i) resting-state functional magnetic resonance imaging (rest-fMRI) signals acquired in a pediatric patient with hepatic encephalography associated to a portosystemic shunt and undergoing liver vascular shunt correction, and of (ii) cardiovascular and cerebrovascular time series acquired at rest and during head-up tilt in a subject suffering from orthostatic intolerance.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
We present an approach to assess redundant and synergistic interactions in network systems via the information-theoretic analysis of multivariate physiological processes. The approach sets up a strategy to decompose the information shared between the present states of a group of random processes and their own past states into unique contributions arising from the past of subgroups of processes and redundant and synergistic contributions arising from the dynamic interaction among the subgroups. The method is illustrated in a theoretical example of linearly interacting Gaussian processes, showing that redundancy and synergy are related mostly to unidirectional coupling and to bidirectional coupling with internal dynamics.
View Article and Find Full Text PDFObjective: Concepts of Granger causality (GC) and Granger autonomy (GA) are central to assess the dynamics of coupled physiologic processes. While causality measures have been already proposed and applied in time and frequency domains, measures quantifying self-dependencies are still limited to the time-domain formulation and lack of clear spectral representation.
Methods: We embed into the linear parametric framework for computing GC from a driver X to a target process Y a measure of Granger Isolation (GI) quantifying the part of the dynamics of Y not originating from X, and a new spectral measure of GA assessing frequency-specific patterns of self-dependencies in Y.
Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to track over time the transient pathways occurring in the dynamical activity of a physiological system.
View Article and Find Full Text PDFThis work presents a comparison between different approaches for the model-free estimation of information-theoretic measures of the dynamic coupling between short realizations of random processes. The measures considered are the mutual information rate (MIR) between two random processes X and Y and the terms of its decomposition evidencing either the individual entropy rates of X and Y and their joint entropy rate, or the transfer entropies from X to Y and from Y to X and the instantaneous information shared by X and Y. All measures are estimated through discretization of the random variables forming the processes, performed either via uniform quantization (binning approach) or rank ordering (permutation approach).
View Article and Find Full Text PDFBioengineering (Basel)
March 2023
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity.
View Article and Find Full Text PDFWe present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrovascular regulation from the variability of mean cerebral blood flow velocity (CBFV) and mean arterial pressure (MAP), and the cardiovascular regulation from the variability of heart period (HP) and systolic arterial pressure (SAP). We analyze time series acquired at rest and during the early and late phase of head-up tilt in subjects developing orthostatic syncope in response to prolonged postural stress, and in healthy controls.
View Article and Find Full Text PDFBrain plasticity and functional reorganization are mechanisms behind functional motor recovery of patients after an ischemic stroke. The study of resting-state motor network functional connectivity by means of EEG proved to be useful in investigating changes occurring in the information flow and find correlation with motor function recovery. In the literature, most studies applying EEG to post-stroke patients investigated the undirected functional connectivity of interacting brain regions.
View Article and Find Full Text PDFThe amount of information exchanged per unit of time between two dynamic processes is an important concept for the analysis of complex systems. Theoretical formulations and data-efficient estimators have been recently introduced for this quantity, known as the mutual information rate (MIR), allowing its continuous-time computation for event-based data sets measured as realizations of coupled point processes. This work presents the implementation of MIR for point process applications in Network Physiology and cardiovascular variability, which typically feature short and noisy experimental time series.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
We present the implementation to cardiovascular variability of a method for the information-theoretic estimation of the directed interactions between event-based data. The method allows to compute the transfer entropy rate (TER) from a source to a target point process in continuous time, thus overcoming the severe limitations associated with time discretization of event-based processes. In this work, the method is evaluated on coupled cardiovascular point processes representing the heartbeat dynamics and the related peripheral pulsation, first using a physiologically-based simulation model and then studying real point-process data from healthy subjects monitored at rest and during postural stress.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Different information-theoretic measures are available in the literature for the study of pairwise and higher-order interactions in multivariate dynamical systems. While these measures operate in the time domain, several physiological and non-physiological systems exhibit a rich oscillatory content that is typically analyzed in the frequency domain through spectral and cross-spectral approaches. For Gaussian systems, the relation between information and spectral measures has been established considering coupling and causality measures, but not for higher-order interactions.
View Article and Find Full Text PDFBackground: Research into the effects of asthma treatments on the extra-pulmonary symptoms of severe asthma is limited by the absence of a suitable questionnaire. The aim was to create a questionnaire suitable for intervention studies by selecting symptoms that are statistically associated with asthma pathology and therefore may improve when pathology is reduced.
Methods: Patients attending a specialist asthma clinic completed the 65-item General Symptom Questionnaire (GSQ-65), a questionnaire validated for assessing symptoms of people with multiple medically unexplained symptoms.
Philos Trans A Math Phys Eng Sci
December 2021
While cross-spectral and information-theoretic approaches are widely used for the multivariate analysis of physiological time series, their combined utilization is far less developed in the literature. This study introduces a framework for the spectral decomposition of multivariate information measures, which provides frequency-specific quantifications of the information shared between a target and two source time series and of its expansion into amounts related to how the sources contribute to the target dynamics with unique, redundant and synergistic information. The framework is illustrated in simulations of linearly interacting stochastic processes, showing how it allows us to retrieve amounts of information shared by the processes within specific frequency bands which are otherwise not detectable by time-domain information measures, as well as coupling features which are not detectable by spectral measures.
View Article and Find Full Text PDFOne of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2021
Objective: While understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience, existing methods either do not consider the inherent point-process nature of spike trains or are based on parametric assumptions. This work presents an information-theoretic framework for the model-free, continuous-time estimation of both undirected (symmetric) and directed (Granger-causal) interactions between spike trains.
Methods: The framework computes the mutual information rate (MIR) and the transfer entropy rate (TER) for two point processes X and Y, showing that the MIR between X and Y can be decomposed as the sum of the TER along the directions X → Y and Y → X.