Publications by authors named "Yong-Mi Kim"

Diabetes impacts approximately 37.3 million Americans. The majority of HbA1c studies focused on independent variables while there are possibilities of some variables serving as an antecedent to other variables.

View Article and Find Full Text PDF

The Wnt signaling pathway plays a critical role in regulating normal hematopoiesis and immune cell development. However, its dysregulation has emerged as a key driver of leukemogenesis. Leukemic stem cells exploit aberrant Wnt signaling to sustain self-renewal, evade apoptosis, and promote unchecked proliferation.

View Article and Find Full Text PDF

Our study demonstrates the use of "IF-THEN" SynNotch-gated CAR-T cells targeting CD33 and CD123 in AML reduces off-tumor toxicity. This strategy enhances T-cell phenotype, improves expansion, preserves HSPCs, and mitigates cytokine release syndrome-addressing critical limitations of existing AML CAR-T therapies.

View Article and Find Full Text PDF

Out of all the racial groups in the United States, people who identify as American Indian and Alaska Native (AI/AN) have disproportionately worse health as a result of living in poverty. The preponderance of research connects poor health with a socioeconomic perspective, which might create prejudice against AI/AN. As already known, AI/AN's high rates of obesity, diabetes, and stroke in comparison with that of other ethnic groups are mainly derived from their impoverished economic conditions that have forced them to consume the food distributed by the U.

View Article and Find Full Text PDF

Background And Objective: Disease relapse and therapy resistance remain serious impediments to treating cancer. Leukemia stem cells (LSC) are therapy resistant and the cause of relapse. A state of deep quiescence appears to enable cancer stem cells (CSC) to acquire new somatic mutations essential for disease progression and therapy resistance.

View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) continues to have a poor prognosis, warranting new therapeutic strategies. The bone marrow (BM) microenvironment consists of niches that interact with not only normal haematopoietic stem cells (HSC) but also leukaemia cells like AML. There are many adhesion molecules in the BM microenvironment; therein, integrins have been of central interest.

View Article and Find Full Text PDF

The recurrence of cancer following chemotherapy treatment is a major cause of death across solid and hematologic cancers. In B-cell acute lymphoblastic leukemia (B-ALL), relapse after initial chemotherapy treatment leads to poor patient outcomes. Here we test the hypothesis that chemotherapy-treated versus control B-ALL cells can be characterized based on cellular physical phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • There is a need for new treatment options for relapse and refractory B-cell acute lymphoblastic leukemia (B-ALL) due to the difficulties faced with existing therapies.
  • Inhibiting Artemis, a key enzyme involved in DNA repair, may be beneficial for reducing the growth of B-ALL and T-ALL cells by inducing chromosome breaks specifically in these tumor cells.
  • Four compounds that inhibit Artemis have shown strong results in reducing the proliferation of B-ALL cell lines without significantly affecting normal mature B-cells, suggesting a promising direction for developing new treatments for these leukemias.
View Article and Find Full Text PDF

Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells.

View Article and Find Full Text PDF

Treatment of resistant or recurrent acute lymphoblastic leukemia (ALL) remains a challenge. It was previously demonstrated that the adhesion molecule integrin α4, referred to hereafter as α4, mediates the cell adhesion-mediated drug resistance (CAM-DR) of B-cell ALL by binding to vascular cell adhesion molecule-1 (VCAM-1) on bone marrow stroma. In addition, it was previously observed that the blockade of α4 with natalizumab or inhibition using the small molecule antagonist TBC3486 sensitized relapsed ALL cells to chemotherapy.

View Article and Find Full Text PDF

The PI3K/Akt pathway-and in particular PI3Kδ-is known for its role in drug resistant B-cell acute lymphoblastic leukemia (B-ALL) and it is often upregulated in refractory or relapsed B-ALL. Myc proteins are transcription factors responsible for transcribing pro-proliferative genes and c-Myc is often overexpressed in cancers. The chromatin regulator BRD4 is required for expression of c-Myc in hematologic malignancies including B-ALL.

View Article and Find Full Text PDF

Canonical targeting of Polycomb repressive complex 1 (PRC1) to repress developmental genes is mediated by cell-type-specific, paralogous chromobox (CBX) proteins (CBX2, 4, 6, 7, and 8). Based on their central role in silencing and their dysregulation associated with human disease including cancer, CBX proteins are attractive targets for small-molecule chemical probe development. Here, we have used a quantitative and target-specific cellular assay to discover a potent positive allosteric modulator (PAM) of CBX8.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxPhos inhibition in AML by using a novel complex I OxPhos inhibitor, IACS-010759. Cellular adhesion, growth, and apoptosis assays, along with measurements of expression of mitochondrial DNA and generation of mitochondrial reactive oxygen species indicated that direct interactions with BM stromal cells triggered compensatory activation of mitochondrial respiration and resistance to OxPhos inhibition in AML cells.

View Article and Find Full Text PDF

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed.

View Article and Find Full Text PDF

The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion.

View Article and Find Full Text PDF

Dysregulated Wnt signaling plays a central role in initiation, progression, and metastasis in many types of human cancers. Cancer development and resistance to conventional cancer therapies are highly associated with the tumor microenvironment (TME), which is composed of numerous stable non-cancer cells, including immune cells, extracellular matrix (ECM), fibroblasts, endothelial cells (ECs), and stromal cells. Recently, increasing evidence suggests that the relationship between Wnt signaling and the TME promotes the proliferation and maintenance of tumor cells, including leukemia.

View Article and Find Full Text PDF

Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts.

View Article and Find Full Text PDF

Drug resistance is an obstacle in the therapy of acute lymphoblastic leukemia (ALL). Whether the physical properties such as the motility of the cells contribute to the survival of ALL cells after drug treatment has recently been of increasing interest, as they could potentially allow the metastasis of solid tumor cells and the migration of leukemia cells. We hypothesized that chemotherapeutic treatment may alter these physical cellular properties.

View Article and Find Full Text PDF

Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system.

View Article and Find Full Text PDF

Background: Prescription drug monitoring programs (PDMPs) are instrumental in controlling opioid misuse, but opioid users have increasingly shifted to cocaine, creating a different set of medical problems. While opioid use results in multiple medical comorbidities, findings of the existing studies reported single comorbidities rather than a set, and furthermore, those findings are often conflicting because of the lack of controlling for other substances in the analysis when combined use of substance creates synergistic effects. On the other hand, the findings from cocaine use are mainly related to kidney and heart problems, which lack specificity.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(-) disease. We report that CD19(-) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(-) escape BL-ALL while preserving their upfront efficacy.

View Article and Find Full Text PDF

Minimal residual disease (MRD) refers to a chemotherapy/radiotherapy-surviving leukemia cell population that gives rise to relapse of the disease. The detection of MRD is critical for predicting the outcome and for selecting the intensity of further treatment strategies. The development of various new diagnostic platforms, including next-generation sequencing (NGS), has introduced significant advances in the sensitivity of MRD diagnostics.

View Article and Find Full Text PDF