The nasopharyngeal tract contains a complex microbial community essential to maintaining host homeostasis. Recent studies have shown that SARS-CoV-2 infection changes the microbial composition of the nasopharynx. Still, little is known about how it affects the fungal microbiome, which could provide valuable insights into disease pathogenesis.
View Article and Find Full Text PDFSmall non-coding RNAs (sncRNAs) make up ~1% of the transcriptome; nevertheless, they play significant roles in regulating cellular processes. Given the complexity of the central nervous system, sncRNAs likely hold particular importance in the human brain. In this study, we provide sncRNA transcriptomic profiles in a range of adult and prenatal brain regions, with a focus on piRNAs, due to their underexplored expression in somatic cells and tissue-specific nature.
View Article and Find Full Text PDFThe ongoing COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people worldwide and has significant implications for public health. Host transcriptomics profiling provides comprehensive understanding of how the virus interacts with host cells and how the host responds to the virus. COVID-19 disease alters the host transcriptome, affecting cellular pathways and key molecular functions.
View Article and Find Full Text PDFIn the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified.
View Article and Find Full Text PDFClonal hematopoiesis of indeterminate potential (CHIP) is characterized by the presence of clones of mutated blood cells without overt blood diseases. In the last few years, it has emerged that CHIP is associated with atherosclerosis and coronary calcification and that it is an independent determinant of cardiovascular mortality. Recently, CHIP has been found to occur frequently in patients with calcific aortic valve disease (CAVD) and it is associated with a poor prognosis after valve replacement.
View Article and Find Full Text PDFDiagnostics (Basel)
October 2022
Dilated cardiomyopathy (DCM) is a complex disease affecting young adults. It is a pathological condition impairing myocardium activity that leads to heart failure and, in the most severe cases, transplantation, which is currently the only possible therapy for the disease. DCM can be attributed to many genetic determinants interacting with environmental factors, resulting in a highly variable phenotype.
View Article and Find Full Text PDFSince its first appearance, the SARS-CoV-2 has spread rapidly in the human population, reaching the pandemic scale with >280 million confirmed infections and more than 5 million deaths to date (https://covid19.who.int/).
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal growth and differentiation, neuronal plasticity, learning, and memory. Using CRISPR/Cas9 technology, we generated a vital Bdnf null mutant line in zebrafish and carried out its molecular and behavioral characterization. Although no defects are evident on a morphological inspection, 66% of coding genes and 37% of microRNAs turned out to be differentially expressed in compared with wild type sibling embryos.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
April 2022
The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater.
View Article and Find Full Text PDFFrom December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread rapidly, leading to a global pandemic. Little is known about possible relationships between SARS-CoV-2 and other viruses in the respiratory system affecting patient prognosis and outcomes. This study aims to characterize respiratory virome profiles in association with SARS-CoV-2 infection and disease severity, through the analysis in 89 nasopharyngeal swabs collected in a patient's cohort from the Campania region (Southern Italy).
View Article and Find Full Text PDFBackground: ZFYVE19 (Zinc Finger FYVE-Type Containing 19) mutations have most recently been associated to a novel type of high gamma-glutamyl transpeptidase (GGT), non-syndromic, neonatal-onset intrahepatic chronic cholestasis possibly associated to cilia dysfunction. Herein, we report a new case with further studies of whole exome sequencing (WES) and immunofluorescence in primary cilia of her cultured fibroblasts which confirm the observation.
Results: A now 5-year-old girl born to clinically healthy consanguineous Moroccan parents was assessed at 59 days of life due to severe cholestatic jaundice with increased serum bile acids and GGT, and preserved hepatocellular synthetic function.
Life expectancy has gradually grown over the last century. This has deeply affected healthcare costs, since the growth of an aging population is correlated to the increasing burden of chronic diseases. This represents the interesting challenge of how to manage patients with chronic diseases in order to improve health care budgets.
View Article and Find Full Text PDFEstrogen receptors (ERα and ERβ) are ligand-activated transcription factors that play different roles in gene regulation and show both overlapping and specific tissue distribution patterns. ERβ, contrary to the oncogenic ERα, has been shown to act as an oncosuppressor in several instances. However, while the tumor-promoting actions of ERα are well-known, the exact role of ERβ in carcinogenesis and tumor progression is not yet fully understood.
View Article and Find Full Text PDF(PIWIL) proteins and small non-coding piRNAs, involved in genome regulation in germline cells, are found aberrantly expressed in human tumors. Gene expression data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and the European Genome-Phenome Archive (EGA) indicate that the gene is ectopically activated in a significant fraction of colorectal cancers (CRCs), where this is accompanied by promoter demethylation, together with germline factors required for piRNA production. Starting from this observation, the PIWIL/piRNA pathway was studied in detail in COLO 205 CRC cells, which express significant levels of this protein, to investigate role and significance of ectopic expression in human tumors.
View Article and Find Full Text PDFNon-coding regions with dozens to several hundred base pairs of extreme conservation have been found in all metazoan genomes. The distribution of these conserved non-coding elements (CNE) within and across genomes has suggested that many of them may have roles as transcriptional regulatory elements. A combination of bioinformatics and experimental approaches can be used to identify CNEs with regulatory activity in phylogenetically distant species.
View Article and Find Full Text PDFNeurotrophins (NTF) are a family of secreted nerve growth factors with affinity for tyrosine kinase (Ntrk) and p75 receptors. To fully understand the variety of developmental roles played by NTFs, it is critical to know when and where genes encoding individual ligands and receptors are transcribed. Identification of ntf and ntrk transcripts in zebrafish development remains to be fully characterized for further uncovering the potential function(s) of the NTF signal transduction pathway.
View Article and Find Full Text PDFEpithelial-mesenchymal interactions are crucial for the development of numerous animal structures. Thus, unraveling how molecular tools are recruited in different lineages to control interplays between these tissues is key to understanding morphogenetic evolution. Here, we study Esrp genes, which regulate extensive splicing programs and are essential for mammalian organogenesis.
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system is a recently discovered tool for genome editing that has quickly revolutionized the ability to generate site-specific mutations in a wide range of animal models, including nonhuman primates. Indeed, a significant number of scientific reports describing single or multiplex guide RNA microinjection, double-nicking strategies, site-specific knock-in and conditional knock-out have been published in less than three years. However, despite the great potential of this new technology, there are some limitations because of the presence of off-target genomic sites, which must be taken into consideration.
View Article and Find Full Text PDFMol Biotechnol
January 2016
The introduction of new genome editing tools such as ZFNs, TALENs and, more recently, the CRISPR/Cas9 system, has greatly expanded the ability to knock-out genes in different animal models, including zebrafish. However, time and costs required for the screening of a huge number of animals, aimed to identify first founder fishes (F0), and then carriers (F1) are still a bottleneck. Currently, high-resolution melting (HRM) analysis is the most efficient technology for large-scale InDels detection, but the very expensive equipment demanded for its application may represent a limitation for research laboratories.
View Article and Find Full Text PDFRetinal axon specification and growth are critically sensitive to the dosage of numerous signaling molecules and transcription factors. Subtle variations in the expression levels of key molecules may result in a variety of axonal growth anomalies. miR-181a and miR-181b are two eye-enriched microRNAs whose inactivation in medaka fish leads to alterations of the proper establishment of connectivity and function in the visual system.
View Article and Find Full Text PDFConnectivity and function of neuronal circuitry require the correct specification and growth of axons and dendrites. Here, we identify the microRNAs miR-181a and miR-181b as key regulators of retinal axon specification and growth. Loss of miR-181a/b in medaka fish (Oryzias latipes) failed to consolidate amacrine cell processes into axons and delayed the growth of retinal ganglion cell (RGC) axons.
View Article and Find Full Text PDF