Purpose: The purpose of this study was to investigate the impact of using flattening filter-free (FFF) beams and the aperture shape controller (ASC) on the complexity of conventional large-field treatment plans.
Methods And Materials: A total of 24 head and neck (H&N) and 24 prostate with pelvic nodes treatment plans were used in this study. Each plan was reoptimized using the original clinical objectives with both flattened and FFF beams, as well as six different ASC settings.
J Appl Clin Med Phys
March 2021
A novel, breast-specific stereotactic radiotherapy device has been developed for delivery of highly conformal, accelerated partial breast irradiation. This device employs a unique, vacuum-assisted, breast cup immobilization system that applies a gentle, negative pressure to the target breast with the patient in the prone position. A device-specific patient loader is utilized for simulation scanning and device docking.
View Article and Find Full Text PDFPhys Med Biol
July 2013
The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system.
View Article and Find Full Text PDFPurpose: A dedicated stereotactic gamma irradiation device, the GammaPod™ from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department.
Methods: The GammaPod™ stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 (60)Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame.
J Appl Clin Med Phys
October 2008
The accuracy of four-dimensional computed tomography (4DCT) imaging depends on temporal characteristics of the acquisition protocol--for example, the temporal spacing of the reconstructed images (also known as cine duration between images) and the gantry rotation speed. These parameters affect the temporal resolution of 4DCT images, and a single default acquisition protocol, as commonly used in most clinics, may be suboptimal for a subset of respiratory motion characteristics. It could lead to substantial inaccuracies in target delineation.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
April 2008
Purpose: Use of internal margins to account for respiratory motion of the target volumes is a common strategy in radiotherapy of mobile tumors. Although efficient for tumor coverage, this expansion also risks increased toxicity to nearby healthy organs and therefore requires a careful selection of appropriate margins. In this study, we demonstrate an optimization of the internal margin used to account for respiration motion.
View Article and Find Full Text PDF