Publications by authors named "Yasuhiro Yoshimura"

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to kidney failure. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single-nucleus multimodal atlas of an orthologous mouse PKD model at early, mid, and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes.

View Article and Find Full Text PDF
Article Synopsis
  • Acute kidney injury (AKI) leads to damage in kidney epithelial cells, and while the body attempts to repair this, incomplete repair can result in chronic kidney disease (CKD).
  • Researchers created a detailed single-nucleus multiomic atlas from mouse models of AKI to uncover how changes in gene regulation contribute to the transition from AKI to CKD, focusing on proinflammatory pathway activation.
  • The study also included human AKI samples, finding that the transcription factor CREB5 plays a key role in both successful and faulty repair processes, revealing important insights into cell behavior following injury.
View Article and Find Full Text PDF

Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and causes significant morbidity, ultimately leading to end-stage kidney disease. PKD pathogenesis is characterized by complex and dynamic alterations in multiple cell types during disease progression, hampering a deeper understanding of disease mechanism and the development of therapeutic approaches. Here, we generate a single nucleus multimodal atlas of an orthologous mouse PKD model at early, mid and late timepoints, consisting of 125,434 single-nucleus transcriptomic and epigenetic multiomes.

View Article and Find Full Text PDF

In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase () to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice.

View Article and Find Full Text PDF

Emerging spatially resolved transcriptomics technologies allow for the measurement of gene expression in situ at cellular resolution. We apply direct RNA hybridization-based in situ sequencing (dRNA HybISS, Cartana part of 10xGenomics) to compare male and female healthy mouse kidneys and the male kidney injury and repair timecourse. A pre-selected panel of 200 genes is used to identify cell state dynamics patterns during injury and repair.

View Article and Find Full Text PDF

Renal proximal tubule epithelial cells have considerable intrinsic repair capacity following injury. However, a fraction of injured proximal tubule cells fails to undergo normal repair and assumes a proinflammatory and profibrotic phenotype that may promote fibrosis and chronic kidney disease. The healthy to failed repair change is marked by cell state-specific transcriptomic and epigenomic changes.

View Article and Find Full Text PDF

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition we generated a single nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single nucleus transcriptomes and epigenomes.

View Article and Find Full Text PDF

Background: Mosaic loss of Y chromosome (LOY) is the most common chromosomal alteration in aging men. Here, we use single-cell RNA and ATAC sequencing to show that LOY is present in the kidney and increases with age and chronic kidney disease.

Results: The likelihood of a cell having LOY varies depending on its location in the nephron.

View Article and Find Full Text PDF

Significance Statement: HNF4 genes promote proximal tubule differentiation in mice, but their function in human nephrogenesis is not fully defined. This study uses human pluripotent stem cell (PSC)-derived kidney organoids as a model to investigate HNF4A and HNF4G functions. The loss of HNF4A , but not HNF4G , impaired reabsorption-related molecule expression and microvilli formation in human proximal tubules.

View Article and Find Full Text PDF

Kidney organoids differentiated from pluripotent stem cells are powerful models of kidney development and disease but are characterized by cell immaturity and off-target cell fates. Comparing the cell-specific gene regulatory landscape during organoid differentiation with human adult kidney can serve to benchmark progress in differentiation at the epigenome and transcriptome level for individual organoid cell types. Using single-cell multiome and histone modification analysis, we report more broadly open chromatin in organoid cell types compared to the human adult kidney.

View Article and Find Full Text PDF
Article Synopsis
  • 'Kitahonami' is a popular soft red winter wheat cultivar in Hokkaido, Japan, making up a significant portion of the country's wheat production but is susceptible to Wheat Yellow Mosaic Virus (WYMV).
  • A new breeding line called 'Kitami-94' was developed through backcrossing with 'Kitahonami' and has shown resistance to WYMV while maintaining similar agronomic traits.
  • 'Kitami-94' could help researchers understand WYMV resistance mechanisms and assist in creating new wheat cultivars in the future.
View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of end stage renal disease characterized by progressive expansion of kidney cysts. To better understand the cell types and states driving ADPKD progression, we analyze eight ADPKD and five healthy human kidney samples, generating single cell multiomic atlas consisting of ~100,000 single nucleus transcriptomes and ~50,000 single nucleus epigenomes. Activation of proinflammatory, profibrotic signaling pathways are driven by proximal tubular cells with a failed repair transcriptomic signature, proinflammatory fibroblasts and collecting duct cells.

View Article and Find Full Text PDF

Maximizing the potential of human kidney organoids for drug testing and regenerative medicine and to model development and disease requires addressing cell immaturity, the lack of a mature collecting system, and off-target cell types. By independently generating two kidney progenitor cell populations-metanephric mesenchyme and ureteric bud (UB)-like cells-we could generate kidney organoids with a collecting system. We also identify the hormones aldosterone and arginine vasopressin (AVP) as critical to promote differentiation of collecting duct cell types including both principal cells (PCs) and intercalated cells (ICs).

View Article and Find Full Text PDF

The glomerular podocyte is one of the major targets of kidney research. Recent establishment of kidney organoids from pluripotent stem cells has enabled the detailed analysis of human podocytes in both development and disease. The podocytes in organoids express slit diaphragm-related genes and proteins and exhibit characteristic morphology, especially upon experimental transplantation.

View Article and Find Full Text PDF

Nephrons, the functional units of the kidney, are derived from nephron progenitor cells (NPCs). Here, we describe methods to reconstruct nephron tissue via induction of NPCs from mouse and human pluripotent stem cells, which mimic multistep developmental signals in vivo. Induced NPCs differentiate into three-dimensional nephron structures, including glomerular podocytes and nephric tubules, which are useful for studying early stages of kidney specification and morphogenetic processes in the context of normal development or disease.

View Article and Find Full Text PDF

Background: Previous research has elucidated the signals required to induce nephron progenitor cells (NPCs) from pluripotent stem cells (PSCs), enabling the generation of kidney organoids. However, selectively controlling differentiation of NPCs to podocytes has been a challenge.

Methods: We investigated the effects of various growth factors in cultured mouse embryonic NPCs during three distinct steps of nephron patterning: from NPC to pretubular aggregate, from the latter to epithelial renal vesicle (RV), and from RV to podocyte.

View Article and Find Full Text PDF

Mutations in the NPHS1 gene, which encodes NEPHRIN, cause congenital nephrotic syndrome, resulting from impaired slit diaphragm (SD) formation in glomerular podocytes. However, methods for SD reconstitution have been unavailable, thereby limiting studies in the field. In the present study, we established human induced pluripotent stem cells (iPSCs) from a patient with an NPHS1 missense mutation, and reproduced the SD formation process using iPSC-derived kidney organoids.

View Article and Find Full Text PDF

The kidney is a vital organ that has an important role in the maintenance of homeostasis by fluid volume regulation and waste product excretion. This role cannot be performed without the three-dimensional (3D) structure of the kidney. Therefore, it is important to generate the 3D structure of the kidney when inducing functional kidney tissue or the whole organ from pluripotent stem cells.

View Article and Find Full Text PDF

Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells.

View Article and Find Full Text PDF

Wheat yellow mosaic virus resistance of Madsen is governed by two complementary QTLs, Qym1 and Qym2 , located on chromosome arms 2DL and 3BS. Wheat yellow mosaic, caused by Wheat yellow mosaic virus (WYMV), is one of the most serious wheat diseases in East Asia. In this study, recombinant inbred lines (RILs, F9) from a cross between cultivars Madsen (resistant) and Hokushin (susceptible) grown in a WYMV-infected nursery field were tested for the presence of WYMV in leaves by enzyme-linked immunosorbent assay (ELISA) and genotyped by using genome-wide molecular markers.

View Article and Find Full Text PDF

The winter wheat variety Kitahonami shows a superior flour yield in comparison to other Japanese soft wheat varieties. To map the quantitative trait loci (QTL) associated with this trait, association mapping was performed using a panel of lines from Kitahonami's pedigree, along with leading Japanese varieties and advanced breeding lines. Using a mixed linear model corrected for kernel types and familial relatedness, 62 marker-trait associations for flour yield were identified and classified into 21 QTLs.

View Article and Find Full Text PDF

The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.

View Article and Find Full Text PDF

Unlabelled: The mechanism of hypotension induced by anesthetics is not completely understood. Because no electrophysiologic examination of the effects of propofol on the central nervous system has shown its involvement in the control of sympathetic and cardiovascular functions, we investigated the actions of propofol on rat hypothalamic paraventricular nucleus (PVN) neurons using the whole-cell mode of the patch-clamp technique in rat hypothalamic PVN slice preparations. Propofol induced Cl(-) currents at concentrations of 10(-5) and 10(-4) M, which were sensitive to picrotoxin and, to a lesser extent, to strychnine.

View Article and Find Full Text PDF