Publications by authors named "Yanis Djebra"

Background: The mitochondrial membrane potential is a key biophysical parameter of mitochondrial function, which can be useful for the diagnosis and treatment monitoring of various cardiac diseases. We present a non-invasive PET/MR imaging method for 3D myocardial membrane potential mapping in humans.

Results: An in vivo PET/MR imaging study was performed in three healthy subjects (1 male and 2 females; 48 ± 29 years old) under a study protocol approved by the local Institutional Review Board (IRB).

View Article and Find Full Text PDF

Positron Emission Tomography (PET) is a valuable imaging method for studying molecular-level processes in the body, such as hyperphosphorylated tau (p-tau) protein aggregates, a hallmark of several neurodegenerative diseases including Alzheimer's disease. P-tau density and cerebral perfusion can be quantified from dynamic PET images using tracer kinetic modeling techniques. However, noise in PET images leads to uncertainty in the estimated kinetic parameters, which can be quantified by estimating the posterior distribution of kinetic parameters using Bayesian inference (BI).

View Article and Find Full Text PDF

Purpose: To develop a new method for free-breathing 3D extracellular volume (ECV) mapping of the whole heart at 3 T.

Methods: A free-breathing 3D cardiac ECV mapping method was developed at 3 T. T mapping was performed before and after contrast agent injection using a free-breathing electrocardiogram-gated inversion recovery sequence with spoiled gradient echo readout.

View Article and Find Full Text PDF

$\textbf{Purpose:}$ To develop a new method for free-breathing 3D extracellular volume (ECV) mapping of the whole heart at 3T. $\textbf{Methods:}$ A free-breathing 3D cardiac ECV mapping method was developed at 3T. T1 mapping was performed before and after contrast agent injection using a free-breathing ECG-gated inversion-recovery sequence with spoiled gradient echo readout.

View Article and Find Full Text PDF

Purpose: To develop a manifold learning-based method that leverages the intrinsic low-dimensional structure of MR Spectroscopic Imaging (MRSI) signals for joint spectral quantification.

Methods: A linear tangent space alignment (LTSA) model was proposed to represent MRSI signals. In the proposed model, the signals of each metabolite were represented using a subspace model and the local coordinates of the subspaces were aligned to the global coordinates of the underlying low-dimensional manifold via linear transform.

View Article and Find Full Text PDF

The spatial resolution and temporal frame-rate of dynamic magnetic resonance imaging (MRI) can be improved by reconstructing images from sparsely sampled k -space data with mathematical modeling of the underlying spatiotemporal signals. These models include sparsity models, linear subspace models, and non-linear manifold models. This work presents a novel linear tangent space alignment (LTSA) model-based framework that exploits the intrinsic low-dimensional manifold structure of dynamic images for accelerated dynamic MRI.

View Article and Find Full Text PDF

Purpose: To develop a cardiac T mapping method for free-breathing 3D T mapping of the whole heart at 3 T with transmit B ( ) correction.

Methods: A free-breathing, electrocardiogram-gated inversion-recovery sequence with spoiled gradient-echo readout was developed and optimized for cardiac T mapping at 3 T. High-frame-rate dynamic images were reconstructed from sparse (k,t)-space data acquired along a stack-of-stars trajectory using a subspace-based method for accelerated imaging.

View Article and Find Full Text PDF

Image quality of positron emission tomography (PET) reconstructions is degraded by subject motion occurring during the acquisition. Magnetic resonance (MR)-based motion correction approaches have been studied for PET/MR scanners and have been successful at capturing regular motion patterns, when used in conjunction with surrogate signals (e.g.

View Article and Find Full Text PDF