Over the past two decades, our understanding of Lauraceae, a large family of woody plants, has undergone significant advances in phylogeny, taxonomy, and biogeography. Molecular systematic studies have elucidated the basic relationships within the family with plastid phylogenomic analyses providing robust support for deep-level relationships between Lauraceae lineages, leading to the recognition of nine tribes: Hypodaphnideae, Cryptocaryeae, Cassytheae, Neocinnamomeae, Caryodaphnopsideae, Mezilaureae, Perseeae, Laureae, and Cinnamomeae, with Mezilaureae validated here. Nuclear genomes and comparative genomics studies have also clarified aspects of the family's evolutionary history and metabolic diversity.
View Article and Find Full Text PDFMol Ecol Resour
May 2022
Accurate identification of species from timber is an essential step to help control illegal logging and forest loss. However, current approaches to timber identification based on morphological and anatomical characteristics have limited species resolution. DNA barcoding is a proven tool for plant species identification, but there is a need to build reliable reference data across broad taxonomic and spatial scales.
View Article and Find Full Text PDFLauraceae are an important component of tropical and subtropical forests and have major ecological and economic significance. Owing to lack of clear-cut morphological differences between genera and species, this family is an ideal case for testing the efficacy of DNA barcoding in the identification and discrimination of species and genera. In this study, we evaluated five widely recommended plant DNA barcode loci matK, rbcL, trnH-psbA, ITS2 and the entire ITS region for 409 individuals representing 133 species, 12 genera from China.
View Article and Find Full Text PDFBackground: Within a regional floristic context, DNA barcoding is more useful to manage plant diversity inventories on a large scale and develop valuable conservation strategies. However, there are no DNA barcode studies from tropical areas of China, which represents one of the biodiversity hotspots around the world.
Methodology And Principal Findings: A DNA barcoding database of an Asian tropical trees with high diversity was established at Xishuangbanna Nature Reserve, Yunnan, southwest China using rbcL and matK as standard barcodes, as well as trnH-psbA and ITS as supplementary barcodes.