Publications by authors named "Xinh-Xinh Nguyen"

Currently, anti-inflammatory drugs fail to reduce pulmonary fibrosis and tissue remodeling in the clinic. Thus, there is an unmet need to develop novel antifibrotic drugs capable of reversing disease. Our lab has identified two novel mediators of pulmonary fibrosis belonging to the tumor necrosis factor superfamily (TNFSF), LIGHT (TNFSF14) and TL1A (TNFSF15).

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a clinically severe and commonly fatal complication of Systemic Sclerosis (SSc). Our group has previously reported profibrotic roles for Insulin-like Growth Factor II (IGF-II) and Lysyl Oxidase (LOX) in SSc-PF. We sought to identify downstream regulatory mediators of IGF-II.

View Article and Find Full Text PDF

There is a need for better predictive models of the human immune system to evaluate safety and efficacy of immunomodulatory drugs and biologics for successful product development and regulatory approvals. Current models, which are often tested in two-dimensional (2D) tissue culture polystyrene, and preclinical animal models fail to fully recapitulate the function and physiology of the human immune system. Microphysiological systems (MPSs) that can model key microenvironment cues of the human immune system, as well as of specific organs and tissues, may be able to recapitulate specific features of the inflammatory response.

View Article and Find Full Text PDF

Fibroproliferative disorders such as systemic sclerosis (SSc) have no effective therapies and result in significant morbidity and mortality. We recently demonstrated that the C-terminal domain of endostatin, known as E4, prevented and reversed both dermal and pulmonary fibrosis. Our goal was to identify the mechanism by which E4 abrogates fibrosis and its cell surface binding partner(s).

View Article and Find Full Text PDF

Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT).

View Article and Find Full Text PDF

TGFβ1 is a profibrotic mediator that contributes to a broad spectrum of pathologies, including systemic sclerosis-associated pulmonary fibrosis (SSc-PF). However, the secretome of TGFβ1-stimulated primary human normal lung (NL) fibroblasts has not been well characterized. Using fluorescent 2-dimensional gel electrophoresis (2D-PAGE) and differential gel electrophoresis (DIGE) followed by Mass Spectrometry, we identified 37 differentially secreted proteins in the conditioned media of TGFβ1-activated NL fibroblasts and generated a protein-protein association network of the TGFβ1 secretome using STRING.

View Article and Find Full Text PDF

Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding protein-5 (IGFBP-5) is a conserved member of the IGFBP family of proteins that is overexpressed in SSc and IPF lung tissues. In this study, we investigated the functional role of IGFBP-5 in the development of fibrosis in vivo using a transgenic model.

View Article and Find Full Text PDF

Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Lysyl oxidase (LOX) is a copper-dependent amine oxidase whose primary function is the covalent crosslinking of collagens in the extracellular matrix (ECM). We investigated the role of LOX in the pathophysiology of SSc.

View Article and Find Full Text PDF
Article Synopsis
  • Lung fibrosis and tissue remodeling are linked to chronic diseases like asthma and pulmonary fibrosis, but current therapies targeting fibrosis are limited.
  • In mouse models, blocking the cytokine TL1A or deleting its receptor DR3 reduced key features of airway remodeling, such as increased smooth muscle mass and collagen accumulation.
  • TL1A is found in the airways and on various lung cells, and its interaction with DR3 stimulates lung structural cells to promote fibrosis; thus, disrupting this interaction could lead to new treatments for fibrotic lung diseases.
View Article and Find Full Text PDF

The Insulin-like growth factor (IGF) system plays an important role in variety cellular biological functions; we previously reported levels of IGF binding proteins (IGFBP) -3 and -5 are increased in dermal and pulmonary fibrosis associated with the prototypic fibrosing disease systemic sclerosis (SSc), induce extracellular matrix (ECM) production, and promote fibrosis. We sought to examine the effects of another member of the family, IGFBP-4, on ECM production and fibrosis using cell-based, organ culture and mouse lung fibrosis models. IGFBP-4 mRNA levels were significantly decreased in pulmonary fibroblasts of patients with SSc.

View Article and Find Full Text PDF

Lysosomal exocytosis is a ubiquitous process negatively regulated by neuraminidase 1 (NEU1), a sialidase mutated in the glycoprotein storage disease sialidosis. In mice, excessive lysosomal exocytosis is at the basis of disease pathogenesis. Yet, the tissue-specific molecular consequences of this deregulated pathway are still unfolding.

View Article and Find Full Text PDF

Insulin-like growth factor binding protein-5 (IGFBP-5) induces production of the extracellular matrix (ECM) components collagen and fibronectin both in vitro and in vivo and is overexpressed in patients with fibrosing lung diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). However, the mechanism by which IGFBP-5 exerts its fibrotic effect is incompletely understood. Recent reports have shown a substantial role of reactive oxygen species (ROS) in fibrosis; thus we hypothesized that IGFBP-5 induces production of ROS to mediate the profibrotic process.

View Article and Find Full Text PDF

Pulmonary fibrosis is a hallmark of diseases such as systemic sclerosis (SSc, scleroderma) and idiopathic pulmonary fibrosis (IPF). To date, the therapeutic options for patients with pulmonary fibrosis are limited, and organ transplantation remains the most effective option. Insulin-like growth factor-binding protein 5 (IGFBP-5) is a conserved member of the IGFBP family of proteins that is overexpressed in SSc and IPF.

View Article and Find Full Text PDF

Genetic variants identified by genome-wide association studies explain only a modest proportion of heritability, suggesting that meaningful associations lie 'hidden' below current thresholds. Here, we integrate information from association studies with epigenomic maps to demonstrate that enhancers significantly overlap known loci associated with the cardiac QT interval and QRS duration. We apply functional criteria to identify loci associated with QT interval that do not meet genome-wide significance and are missed by existing studies.

View Article and Find Full Text PDF