Mol Plant Pathol
August 2025
The alterations in gene expression levels in response to the pathogens are pivotal in determining pathogenicity or susceptibility. However, the cell-type-specific interaction mechanism between the pinewood nematode (PWN) and its hosts remains largely unexplored and poorly understood. Here, we employed single-nucleus RNA sequencing (snRNA-seq) with PWN-infected Arabidopsis leaves to dissect the heterogeneous immune responses.
View Article and Find Full Text PDFHortic Res
November 2024
Propagation through cuttings is a well-established and effective technique for plant multiplication. This study explores the regeneration of poplar roots using spatial transcriptomics to map a detailed developmental trajectory. Mapping of the time-series transcriptome data revealed notable alterations in gene expression during root development, particularly in the activation of cytokinin-responsive genes.
View Article and Find Full Text PDFOver the past few decades, significant improvements in maize yield have been largely attributed to increased plant density of upright hybrid varieties rather than increased yield per plant. However, dense planting triggers shade avoidance responses (SARs) that optimize light absorption but impair plant vigor and performance, limiting yield improvement through increasing plant density. In this study, we demonstrated that high-density-induced leaf angle narrowing and stem/stalk elongation are largely dependent on phytochrome B (phyB1/B2), the primary photoreceptor responsible for perceiving red (R) and far-red (FR) light in maize.
View Article and Find Full Text PDFCommun Biol
April 2024
Coding transcript-derived siRNAs (ct-siRNAs) produced from specific endogenous loci can suppress the translation of their source genes to balance plant growth and stress response. In this study, we generated Arabidopsis mutants with deficiencies in RNA decay and/or post-transcriptional gene silencing (PTGS) pathways and performed comparative sRNA-seq analysis, revealing that multiple RNA decay and PTGS factors impede the ct-siRNA selective production. Genes that produce ct-siRNAs often show increased or unchanged expression and typically have higher GC content in sequence composition.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Pistacia chinensis is known for its biodiesel production. Several varieties of this plant have leaves that produce anthocyanin, which is responsible for their reddish coloration in autumn. This reddish hue is what makes them useful as ornamental plants.
View Article and Find Full Text PDF