Hydrogel electrolytes are an integral part of flexible solid-state supercapacitors. To further improve the low ionic conductivity, large interfacial resistance and poor cycling stability for hydrogel electrolytes, the VCT MXene-enhanced polyvinyl alcohol hydrogel electrolyte was fabricated to enhance its mechanical and electrochemical performance. The high-conductivity VCT MXene (16,465.
View Article and Find Full Text PDFUltrathin MXene-based films exhibit superior conductivity and high capacitance, showing promise as electrodes for flexible supercapacitors. This work describes a simple method to enhance the performance of MXene-based supercapacitors by expanding and stabilizing the interlayer space between MXene flakes while controlling the functional groups to improve the conductivity. TiCT MXene flakes are treated with bacterial cellulose (BC) and NaOH to form a composite MXene/BC (A-M/BC) electrode with a microporous interlayer and high surface area (62.
View Article and Find Full Text PDFNanotechnology
April 2023
Combining the new two-dimensional conductive MXene with transition metal oxide to build composite structure is a promising path to improve the conductivity of metal oxide. However, a critical challenge still remains in how to achieve a good combination of MXene and metal oxide. Herein, we develop a facile hydrothermal route to synthesize the MnO/TiCTcomposite electrode for supercapacitors by synergistically coupling MnOnanowires with TiCTMXene nanoflakes.
View Article and Find Full Text PDFWe adopted a simple one-step electrochemical deposition to acquire an efficient nickel cobalt phosphorus (NiCoP) catalyst, which avoided the high temperature phosphatization engineering involved in the traditional synthesis method. The effects of electrolyte composition and deposition time on electrocatalytic performance were studied systematically. The as-prepared NiCoP achieved the lowest overpotential (η = 111 mV in the acidic condition and η = 120 mV in the alkaline condition) for the hydrogen evolution reaction (HER).
View Article and Find Full Text PDF2D MXene nanoflakes usually undergo serious restacking, that easily aggravates during the traditional vacuum-assisted filtration process; and thus, hinders the electrochemical performance of the corresponding film electrodes. Herein, 3D porous compact 1D/2D Fe O /MXene aerogel film electrode with an enhanced electrochemical performance is fabricated by freeze-drying assisted mechanical pressing. An introduction of 1D α-Fe O nanorods can not only alleviate the restacking of 2D MXene but also provide additional pseudocapacitance for the composite film system.
View Article and Find Full Text PDFMAX phases are frequently dominated as precursors for the preparation of the star material MXene, but less eye-dazzling by their own potential applications. In this work, the electrocatalytic hydrogen evolution reaction (HER) activity of MAX phase is investigated. The MAX-derived electrocatalysts are prepared by a two-step in situ electrosynthesis process, an electrochemical etching step followed by an electrochemical deposition step.
View Article and Find Full Text PDFMXenes, as a 2D planar structure nanomaterial, were first reported in 2011. Due to their large specific surface area, high ductility, high electrical conductivity, strong hydrophilic surface, and high mechanical flexibility, MXenes have been extensively explored in the development of various functional materials with desired performances. This review is aimed to summarize the current progress in synthesis, modification, and applications of MXene-based composite films as electrode materials of flexible energy storage devices.
View Article and Find Full Text PDFRecent Pat Nanotechnol
March 2023
Recently, passive solar-driven interfacial evaporation has become one of the fastest-growing technologies for solar energy utilization and desalination. Herein this patent, we provide an overview of other emerging and potential applications of evaporation nanosystems beyond desalination, i.e.
View Article and Find Full Text PDF