Sensors (Basel)
February 2024
Some fusion criteria in multisensor and multitarget motion tracking cannot be directly applied to nonlinear motion models, as the fusion accuracy applied in nonlinear systems is relatively low. In response to the above issue, this study proposes a distributed Gaussian mixture cardinality jumping Markov-cardinalized probability hypothesis density (GM-JMNS-CPHD) filter based on a generalized inverse covariance intersection. The state estimation of the JMNS-CPHD filter combines the state evaluation of traditional CPHD filters with the state estimation of jump Markov systems, estimating the target state of multiple motion models without knowing the current motion models.
View Article and Find Full Text PDF