Our understanding of the influence of ancestral background on genetically determined expression remains limited, especially when gene expression models are applied to studies from different or multiple populations. We performed transcriptome wide association studies (TWAS) in 6 different psychiatric conditions, leveraging gene expression models trained in cohorts with different proportions of African, European, and Indigenous American genetic ancestries. For comparison we repeated each TWAS using a model trained in individuals of predominantly European ancestry.
View Article and Find Full Text PDFAllograft rejection following solid-organ transplantation is a major cause of graft dysfunction and mortality. Current approaches to diagnosis rely on histology, which exhibits wide diagnostic variability and lacks access to molecular phenotypes that may stratify therapeutic response. Here, we leverage image-based spatial transcriptomics at sub-cellular resolution in longitudinal human cardiac biopsies to characterize transcriptional heterogeneity in 62 adult and pediatric heart transplant (HT) recipients during and following histologically-diagnosed rejection.
View Article and Find Full Text PDFBMC Bioinformatics
October 2024
The ability to track disease without tissue biopsy in patients is a major goal in biology and medicine. Here, we identify and characterize cardiomyocyte-derived extracellular vesicles in circulation (EVs; "cardiovesicles") through comprehensive studies of induced pluripotent stem cell-derived cardiomyocytes, genetic mouse models, and state-of-the-art mass spectrometry and low-input transcriptomics. These studies identified two markers (, ) enriched on cardiovesicles for biotinylated antibody-based immunocapture.
View Article and Find Full Text PDFBackground: Long QT syndrome is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by . Variant classification is difficult, often because of lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance.
View Article and Find Full Text PDFAn understanding of human brain individuality requires the integration of data on brain organization across people and brain regions, molecular and systems scales, as well as healthy and clinical states. Here, we help advance this understanding by leveraging methods from computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging, and electronic-health record data sets. We estimated genetically regulated gene expression (gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people from the UK Biobank.
View Article and Find Full Text PDFRegulation of gene expression is a vital component of neurological homeostasis. Cataloging the consequences of endogenous gene expression on the physical structure and connectivity of the brain offers a means of unifying trait-associated genetic variation with trait-associated neurological features. We perform tissue-specific transcriptome-wide association studies (TWASs) on over 3,400 neuroimaging phenotypes in the UK Biobank (N = 33,224) using our joint-tissue imputation (JTI)-TWAS method.
View Article and Find Full Text PDFBackground: Long QT syndrome (LQTS) is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by . Variant classification is difficult, often owing to lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance.
View Article and Find Full Text PDFImaging features associated with neuropsychiatric traits can provide valuable insights into underlying pathophysiology. Using data from the UK biobank, we perform tissue-specific TWAS on over 3,500 neuroimaging phenotypes to generate a publicly accessible resource detailing the neurophysiologic consequences of gene expression. As a comprehensive catalog of neuroendophenotypes, this resource represents a powerful neurologic gene prioritization schema that can improve our understanding of brain function, development, and disease.
View Article and Find Full Text PDFClin Orthop Relat Res
February 2022
Background: Clubfoot, a congenital deformity that presents as a rigid, inward turning of the foot, affects approximately 1 in 1000 infants and occurs as an isolated birth defect in 80% of patients. Despite its high level of heritability, few causative genes have been identified, and mutations in known genes are only responsible for a small portion of clubfoot heritability.
Questions/purposes: (1) Are any rare gene variants enriched (that is, shared) in unrelated patients with isolated clubfoot? (2) Are there other rare variants in the identified gene (Filamin B) in these patients with clubfoot?
Methods: Whole-exome sequence data were generated from a discovery cohort of 183 unrelated probands with clubfoot and 2492 controls.
Introduction: Adolescent idiopathic scoliosis (AIS) is a common musculoskeletal disorder with strong evidence for a genetic contribution. CNVs play an important role in congenital scoliosis, but their role in idiopathic scoliosis has been largely unexplored.
Methods: Exome sequence data from 1197 AIS cases and 1664 in-house controls was analysed using coverage data to identify rare CNVs.
J Pediatr Orthop B
March 2018
Generalized joint hypermobility (GJH) is a risk factor for developing adolescent idiopathic scoliosis (AIS); however, it is not known whether joint hypermobility influences the risk of progression to surgery. Beighton joint hypermobility scores were assessed in 570 female AIS patients. Multivariate analysis was carried out to determine whether Beighton hypermobility scores were predictors of surgical intervention.
View Article and Find Full Text PDF