Early-life adversity influences adult fitness across vertebrate species. In polygynous systems with intense intrasexual competition, males may be more sensitive to conditions experienced during development. However, the importance of different aspects of the early-life environment and how their effects differ between the sexes remains poorly understood.
View Article and Find Full Text PDFBackground: T-helper (Th) cells co-ordinate immune responses to ensure that infections with diverse parasites are controlled effectively. Helminth parasites such as gastrointestinal nematodes (GIN) are generally associated with T-helper type 2 (Th2) responses, while intracellular parasites are associated with Th1 responses. Although laboratory models have reported that Th1 and Th2 can be antagonistic, this has been challenged by studies of natural infections.
View Article and Find Full Text PDFGastrointestinal nematode (GIN) parasites play an important role in the ecological dynamics of many animal populations. Recent studies suggest that fine-scale spatial variation in GIN infection dynamics is important in wildlife systems, but the environmental drivers underlying this variation remain poorly understood. We used data from over two decades of GIN parasite egg counts, host space use, and spatial vegetation data from a long-term study of Soay sheep on St Kilda to test how spatial autocorrelation and vegetation in an individual's home range predict parasite burden across three age groups.
View Article and Find Full Text PDFThe adaptive immune system is critical to an effective response to infection in vertebrates, with T-helper (Th) cells pivotal in orchestrating these responses. In natural populations where co-infections are the norm, different Th responses are likely to play an important role in maintaining host health and fitness, a relationship which remains poorly understood in wild animals. In this study, we characterised variation in functionally distinct Th responses in a wild population of Soay sheep by enumerating cells expressing Th-subset specific transcription factors and quantifying Th-associated cytokines.
View Article and Find Full Text PDF