Publications by authors named "Wolfgang Brandt"

Glucosinolates are plant thioglucosides, which act as chemical defenses. Upon tissue damage, their myrosinase-catalyzed hydrolysis yields aglucones that rearrange to toxic isothiocyanates. Specifier proteins such as thiocyanate-forming protein from (TaTFP) are non-heme iron proteins, which capture the aglucone to form alternative products, e.

View Article and Find Full Text PDF

Three previously undescribed azepino-indole alkaloids, named purpurascenines A-C (-), together with the new-to-nature 7-hydroxytryptophan () as well as two known compounds, adenosine () and riboflavin (), were isolated from fruiting bodies of Fr. (Cortinariaceae). The structures of - were elucidated based on spectroscopic analyses and ECD calculations.

View Article and Find Full Text PDF

The economic and ecologically important genus Eucalyptus is rich in structurally diverse specialized metabolites. While some specialized metabolite classes are highly prevalent across the genus, the cyanogenic glucoside prunasin is only produced by c. 3% of species.

View Article and Find Full Text PDF

Infectious diseases caused by viruses like HIV and SARS-COV-2 (COVID-19) pose serious public health threats. In search for new antiviral small molecules from chemically underexplored species, a previously undescribed atropisomeric C8-C8' linked dimeric coumarin named bichromonol () was isolated from the stem bark of . The structure was elucidated by MS data and NMR spectroscopy.

View Article and Find Full Text PDF

Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown.

View Article and Find Full Text PDF

A rare dihydoxyflavan-epicatechin proanthocyanidin, entcassiflavan-(4β→8)-epicatechin, was isolated from , a plant widely used by traditional people from the Amazon to treat urinary tract infections. The constitution and relative configuration of the compound were elucidated by HR-MS and detailed 1D- and 2D-NMR measurements. By comparing the experimental electronic circular dichroism (ECD) spectrum with the calculated ECD spectra of all 16 possible isomers, the absolute configuration, the interflavan linkage, and the atropisomers could be determined.

View Article and Find Full Text PDF
Article Synopsis
  • Fungal species in the genus studied produce a variety of secondary metabolites, including two new peptaibols, ampullosporin F and ampullosporin G, alongside five known compounds.
  • The structures of ampullosporin F and G were determined using advanced analytical techniques, revealing differences in amino acid sequences that affect their biological activities.
  • Both new compounds showed promising antifungal properties and significant anticancer effects in human prostate and colorectal cancer cell lines, with a molecular docking study conducted to explore their structure-activity relationships.
View Article and Find Full Text PDF

Glycosylation is one of the common modifications of plant metabolites, playing a major role in the chemical/biological diversity of a wide range of compounds. Plant metabolite glycosylation is catalyzed almost exclusively by glycosyltransferases, mainly by Uridine-diphosphate dependent Glycosyltransferases (UGTs). Several X-ray structures have been determined for primary glycosyltransferases, however, little is known regarding structure-function aspects of sugar-sugar/branch-forming O-linked UGTs (SBGTs) that catalyze the transfer of a sugar from the UDP-sugar donor to an acceptor sugar moiety of a previously glycosylated metabolite substrate.

View Article and Find Full Text PDF

Chrysomelina beetlesstore 3-nitropropionic acid in form of a pretoxin, isoxazolin-5-one glucoside-conjugated ester, to protect themselves against predators. Here we identified a cytochrome P450 monooxygenase, CYP347W1, to be involved in the production of the 3-nitropropionic acid moiety of the isoxazolin-5-one glucoside ester. Knocking down CYP347W1 led to a significant depletion in the concentration of the isoxazolin-5-one glucoside ester and an increase in the concentration of the isoxazolin-5-one glucoside in the larval hemolymph.

View Article and Find Full Text PDF

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests.

View Article and Find Full Text PDF

Classical terpenoid biosynthesis involves the cyclization of the linear prenyl pyrophosphate precursors geranyl-, farnesyl-, or geranylgeranyl pyrophosphate (GPP, FPP, GGPP) and their isomers, to produce a huge number of natural compounds. Recently, it was shown for the first time that the biosynthesis of the unique homo-sesquiterpene sodorifen by Serratia plymuthica 4Rx13 involves a methylated and cyclized intermediate as the substrate of the sodorifen synthase. To further support the proposed biosynthetic pathway, we now identified the cyclic prenyl pyrophosphate intermediate pre-sodorifen pyrophosphate (PSPP).

View Article and Find Full Text PDF
Article Synopsis
  • - Three new natural products, phomopsinin A-C, were discovered from an endophytic fungus, along with three known compounds, and their structures were analyzed using various spectroscopic methods.
  • - The acetylated derivative of phomopsinin A (1A) exhibited significant inhibition of nitric oxide production with no cytotoxic effects, unlike its unmodified version and another known compound, cytochalasin L-696,474.
  • - Mechanistic studies indicated that 1A reduces inflammatory markers by downregulating specific enzymes and cytokines and affects key signaling pathways, suggesting it could be a promising anti-inflammatory agent.
View Article and Find Full Text PDF

The recently described flavin-dependent halogenase BrvH is able to catalyse both the bromination and chlorination of indole, but shows significantly higher bromination activity. BrvH was annotated as a tryptophan halogenase, but does not accept tryptophan as a substrate. Its native substrate remains unknown.

View Article and Find Full Text PDF

Stapled peptides derived from the Ugi macrocyclization comprise a special class of cyclopeptides with an N-substituted lactam bridge cross-linking two amino acid side chains. Herein we report a comprehensive analysis of the structural factors influencing the secondary structure of these cyclic peptides in solution. Novel insights into the s-cis/s-trans isomerism and the effect of N-functionalization on the conformation are revealed.

View Article and Find Full Text PDF

Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the phylogenetic and biogeographic patterns of antiinfective compounds from seed plants in one of the most species-rich regions on Earth and identify clades with naturally occurring substances potentially suitable for the development of new pharmaceutical compounds.

View Article and Find Full Text PDF

Human drug-metabolizing cytochrome P450 monooxygenases (CYPs) have enormous substrate promiscuity; this makes them promising tools for the expansion of natural product diversity. Here, we used CYP3A4 for the targeted diversification of a plant biosynthetic route leading to monoterpenoid indole alkaloids. In silico, in vitro and in planta studies proved that CYP3A4 was able to convert the indole alkaloid vinorine into vomilenine, the former being one of the central intermediates in the ajmaline pathway in the medicinal plant Rauvolfia serpentina (L.

View Article and Find Full Text PDF

Black pepper (Piper nigrum L.) is known for its high content of piperine, a cinnamoyl amide derivative regarded as largely responsible for the pungent taste of this widely used spice. Despite its long history and worldwide use, the biosynthesis of piperine and related amides has been enigmatic up to now.

View Article and Find Full Text PDF

The salicinoids are anti-herbivore phenolic glycosides unique to the Salicaceae (Populus and Salix). They consist of a salicyl alcohol glucoside core, which is usually further acylated with benzoic, cinnamic or phenolic acids. While salicinoid structures are well known, their biosynthesis remains enigmatic.

View Article and Find Full Text PDF

Larvae of the leaf beetle Phaedon cochleariae synthesize the iridoid chysomelidial via the mevalonate pathway to repel predators. The normal terpenoid biosynthesis is integrated into the dedicated defensive pathway by the ω-hydroxylation of geraniol to (2E,6E)-2,6-dimethylocta-2,6-diene-1,8-diol (ω-OH-geraniol). Here we identify and characterize the P450 monooxygenase CYP6BH5 as the geraniol hydroxylase using integrated transcriptomics, proteomics and RNA interference (RNAi).

View Article and Find Full Text PDF

(Phyllanthaceae) is an endemic evergreen tropical plant of Cuba that grows in the western part of the island and is used in traditional medicine as an infusion. The aqueous extract of this plant presents a wide range of pharmacological activitiessuch as antimutagenic, antioxidant and antiviral effects. Given the many beneficial effects and the great interest in the development of new pharmacological products from natural sources, the aim of this work was to investigate the phytochemistry of this species and to elucidate the structure of the main bioactive principles.

View Article and Find Full Text PDF

The skeleton of the diterpene dehydroabietylamine was modified, and a set of 12-hydroxy-dehydroabietylamine derivatives was obtained. The compounds were screened in colorimetric Ellman's assays to determine their ability to act as inhibitors for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum). Additional investigations concerning the enzyme kinetics were performed and showed 12-hydroxy-N-(4-nitro-benzoyl)dehydroabietylamine (13) and 12-hydroxy-N-(isonicotinoyl)dehydroabietylamine (17) as selective BChE inhibitors holding good inhibition constants K = 0.

View Article and Find Full Text PDF

For the first time, the pigment composition of basidiocarps from the Chilean mushroom Cortinarius pyromyxa was studied under various aspects like phylogeny, chemistry and antibiotic activity. A molecular biological study supports the monotypic position of C. pyromyxa in subgenus Myxacium, genus Cortinarius.

View Article and Find Full Text PDF

Secondary metabolism is characterized by an impressive structural diversity. Here, we have addressed the mechanisms underlying structural diversification upon damage-induced activation of glucosinolates, a group of thioglucosides found in the Brassicales. The classical pathway of glucosinolate activation involves myrosinase-catalyzed hydrolysis and rearrangement of the aglucone to an isothiocyanate.

View Article and Find Full Text PDF
Article Synopsis
  • A total of 40 carboxamides were synthesized from five natural triterpenoids (oleanolic, ursolic, maslinic, betulinic, and platanic acid) using ethylene diamine with additional substituents.
  • The activity of these carboxamides was tested against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using Ellman's assay, and their inhibition types and constants were determined.
  • Notably, carboxamides from platanic acid were identified as potent BChE inhibitors, particularly one mixed-type inhibitor that demonstrated a very low inhibition constant (K) of 0.07 ± 0.01 µM.
View Article and Find Full Text PDF

Glucosinolates, a group of sulfur-rich thioglucosides found in plants of the order Brassicales, have attracted a lot of interest as chemical defenses of plants and health promoting substances in human diet. They are accumulated separately from their hydrolyzing enzymes, myrosinases, within the intact plant, but undergo myrosinase-catalyzed hydrolysis upon tissue disruption. This results in various biologically active products, e.

View Article and Find Full Text PDF