Publications by authors named "Wojciech Uszko"

AbstractMany animals exhibit ontogenetic niche shifts as they grow, which strongly affects population dynamics. However, such niche shifts can be constrained by the physical environment that the population occupies. To study this, we develop a physiologically structured population model parameterized for brown trout and vary the availability of a stream used as an exclusive juvenile nursery habitat.

View Article and Find Full Text PDF

Global warming can alter size distributions of animal communities, but the contribution of size shifts within versus between species to such changes remains unknown. In particular, it is unclear if expected body size shrinkage in response to warming, observed at the interspecific level, can be used to infer similar size shifts within species. In this study, we compare warming effects on interspecific (relative species abundance) versus intraspecific (relative stage abundance) size structure of competing consumers by analyzing stage-structured bioenergetic food web models consisting of one or two consumer species and two resources, parameterized for pelagic plankton.

View Article and Find Full Text PDF

In many ecosystems, consumers respond to warming differently than their resources, sometimes leading to temporal mismatches between seasonal maxima in consumer demand and resource availability. A potentially equally pervasive, but less acknowledged threat to the temporal coherence of consumer-resource interactions is mismatch in food quality. Many plant and algal communities respond to warming with shifts toward more carbon-rich species and growth forms, thereby diluting essential elements in their biomass and intensifying the stoichiometric mismatch with herbivore nutrient requirements.

View Article and Find Full Text PDF

We theoretically explore consequences of warming for predator-prey dynamics, broadening previous approaches in three ways: we include beyond-optimal temperatures, predators may have a type III functional response, and prey carrying capacity depends on explicitly modelled resources. Several robust patterns arise. The relationship between prey carrying capacity and temperature can range from near-independence to monotonically declining/increasing to hump-shaped.

View Article and Find Full Text PDF

The curvature of generalized Holling type functional response curves is controlled by a shape parameter b yielding hyperbolic type II (b = 1) to increasingly sigmoid type III (b > 1) responses. Empirical estimates of b vary considerably across taxa. Larger consumer-resource body mass ratios have been suggested to generate more pronounced type III responses and therefore to promote dynamic stability.

View Article and Find Full Text PDF