Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). Self-peptide-dependent autoproliferation (AP) of B and T cells is a key mechanism in MS. Here, we show that pro-inflammatory B-T cell-enriched cell clusters (BTECs) form during AP and mirror features of a germinal center reaction.
View Article and Find Full Text PDFPoor understanding of the cellular and molecular basis of clinical and genetic heterogeneity in progressive multiple sclerosis (MS) has hindered the search for new effective therapies. To address this gap, we analyzed 632,000 single-nucleus RNA sequencing profiles from 156 brain tissue samples of MS and control donors to examine inter- and intra-donor heterogeneity. We found distinct cell type-specific gene expression changes between MS gray and white matter, highlighting clear pathology differences.
View Article and Find Full Text PDFJ Neuroinflammation
October 2024
Background: Bruton's tyrosine kinase (BTK) is an intracellular signaling enzyme that regulates B-lymphocyte and myeloid cell functions. Due to its involvement in both innate and adaptive immune compartments, BTK inhibitors have emerged as a therapeutic option in autoimmune disorders such as multiple sclerosis (MS). Brain-penetrant, small-molecule BTK inhibitors may also address compartmentalized neuroinflammation, which is proposed to underlie MS disease progression.
View Article and Find Full Text PDFThe notion of exploiting the regenerative potential of the human brain in physiological aging or neurological diseases represents a particularly attractive alternative to conventional strategies for enhancing or restoring brain function. However, a major first question to address is whether the human brain does possess the ability to regenerate. The existence of human adult hippocampal neurogenesis (AHN) has been at the center of a fierce scientific debate for many years.
View Article and Find Full Text PDFQuality control (QC) is a critical component of single-cell RNA-seq (scRNA-seq) processing pipelines. Current approaches to QC implicitly assume that datasets are comprised of one cell type, potentially resulting in biased exclusion of rare cell types. We introduce SampleQC, which robustly fits a Gaussian mixture model across multiple samples, improves sensitivity, and reduces bias compared to current approaches.
View Article and Find Full Text PDFTo date, most expression quantitative trait loci (eQTL) studies, which investigate how genetic variants contribute to gene expression, have been performed in heterogeneous brain tissues rather than specific cell types. In this study, we performed an eQTL analysis using single-nuclei RNA sequencing from 192 individuals in eight brain cell types derived from the prefrontal cortex, temporal cortex and white matter. We identified 7,607 eGenes, a substantial fraction (46%, 3,537/7,607) of which show cell-type-specific effects, with strongest effects in microglia.
View Article and Find Full Text PDFDoublets are prevalent in single-cell sequencing data and can lead to artifactual findings. A number of strategies have therefore been proposed to detect them. Building on the strengths of existing approaches, we developed , a fast, flexible and accurate Bioconductor-based doublet detection method.
View Article and Find Full Text PDFBioinformatics
June 2022
Motivation: Improvements in single-cell RNA-seq technologies mean that studies measuring multiple experimental conditions, such as time series, have become more common. At present, few computational methods exist to infer time series-specific transcriptome changes, and such studies have therefore typically used unsupervised pseudotime methods. While these methods identify cell subpopulations and the transitions between them, they are not appropriate for identifying the genes that vary coherently along the time series.
View Article and Find Full Text PDFGlioblastoma is an invariably deadly disease. A subpopulation of glioma stem-like cells (GSCs) drives tumor progression and treatment resistance. Two recent studies demonstrated that neurons form oncogenic glutamatergic electrochemical synapses with post-synaptic GSCs.
View Article and Find Full Text PDFRecent high-dimensional single-cell technologies such as mass cytometry are enabling time series experiments to monitor the temporal evolution of cell state distributions and to identify dynamically important cell states, such as fate decision states in differentiation. However, these technologies are destructive, and require analysis approaches that temporally map between cell state distributions across time points. Current approaches to approximate the single-cell time series as a dynamical system suffer from too restrictive assumptions about the type of kinetics, or link together pairs of sequential measurements in a discontinuous fashion.
View Article and Find Full Text PDFWe introduce TreeTop, an algorithm for single cell data analysis to identify and assign a branching score to branch points in biological processes which may have multi-level branching hierarchies. We demonstrate branch point identification for processes with varying topologies, including T-cell maturation, B-cell differentiation and hematopoiesis. Our analyses are consistent with recent experimental studies suggesting a shallower hierarchy of differentiation events in hematopoiesis, rather than the classical multi-level hierarchy.
View Article and Find Full Text PDFGene splicing profiles are frequently altered in cancer, and the splice variants of fibronectin (FN) that contain the extra-domains A (EDA) or B (EDB), referred to as EDA+FN or EDB+FN, are highly upregulated in tumor vasculature. Transforming growth factor β (TGF-β) signaling has been attributed a pivotal role in glioblastoma, with TGF-β promoting angiogenesis and vessel remodeling. By using immunohistochemistry staining, we observed that the oncofetal FN isoforms EDA+FN and EDB+FN are expressed in glioblastoma vasculature.
View Article and Find Full Text PDF