Background: Alteration in metabolic activities is a critical step in cancer progression, and a myriad of metabolic-based therapy options are increasingly being proposed for human tumors. However, emerging evidence highlights interpatient metabolic heterogeneity and underscores the importance of metabolic phenotyping in cancer treatment.
Objectives: To investigate metabolic heterogeneity in cutaneous squamous cell carcinoma (cSCC), and its impact on cSCC characteristics and treatment responses.
Free Radic Biol Med
February 2025
Solar ultraviolet B (UVB) radiation-induced DNA damage is a well-known initiator of skin carcinomas. The UVB-induced DNA damage response (DDR) involves series of signaling cascades that are activated to maintain cell integrity. Among the different biological processes, little is known about the role of energy metabolism in the DDR.
View Article and Find Full Text PDFWhether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.
View Article and Find Full Text PDFIn mammals, about 99% of mitochondrial proteins are synthesized in the cytosol as precursors that are subsequently imported into the organelle. The mitochondrial health and functions rely on an accurate quality control of these imported proteins. Here, we show that the E3 ubiquitin ligase F box/leucine-rich-repeat protein 6 (FBXL6) regulates the quality of cytosolically translated mitochondrial proteins.
View Article and Find Full Text PDFCancers (Basel)
December 2022
Alterations in lipid handling are an important hallmark in cancer. Our aim here is to target key metabolic enzymes to reshape the oncogenic lipid metabolism triggering irreversible cell breakdown. We targeted the key metabolic player proprotein convertase subtilisin/kexin type 9 (PCSK9) using a pharmacological inhibitor (R-IMPP) alone or in combination with 3-hydroxy 3-methylglutaryl-Coenzyme A reductase (HMGCR) inhibitor, simvastatin.
View Article and Find Full Text PDFXeroderma Pigmentosum C (XPC) is a multi-functional protein that is involved not only in the repair of bulky lesions, post-irradiation, via nucleotide excision repair (NER) but also in oxidative DNA damage mending. Since base excision repair (BER) is the primary regulator of oxidative DNA damage, we characterized, post-Ultraviolet B-rays (UVB)-irradiation, the detailed effect of three different XPC mutations in primary fibroblasts derived from XP-C patients on mRNA, protein expression and activity of different BER factors. We found that XP-C fibroblasts are characterized by downregulated expression of different BER factors including , , , , , and β.
View Article and Find Full Text PDFDeveloping trustworthy, cost effective, minimally or non-invasive glucose sensing strategies is of great need for diabetic patients. In this study, we used an experimental type I diabetic mouse model to examine whether the skin would provide novel means for identifying biomarkers associated with blood glucose level. We first showed that skin glucose levels are rapidly influenced by blood glucose concentrations.
View Article and Find Full Text PDFAntioxid Redox Signal
November 2020
REDOX signaling from reactive oxygen species (ROS) generated by the mitochondria (mitochondrial reactive oxygen species [mtROS]) has been implicated in cancer growth and survival. Here, we investigated the effect of 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (AOL), a recently characterized member of the new class of mtROS suppressors (S1QELs), on human lung adenocarcinoma proteome reprogramming, bioenergetics, and growth. AOL reduced steady-state cellular ROS levels in human lung cancer cells without altering the catalytic activity of complex I.
View Article and Find Full Text PDFThe leading cause of cutaneous squamous cell carcinomas (cSCCs) is exposure to ultraviolet radiation (UV). Unlike most other cancers, the incidence rates of cSCCs are still on the rise and the treatment options currently available are limited. We have recently found that dihydroorotate dehydrogenase (DHODH), which is the rate-limiting enzyme in the de novo pyrimidine synthesis pathway, plays a critical role in UVB-induced energy metabolism reprogramming.
View Article and Find Full Text PDFHIF-1α is constitutively expressed in mouse and human epidermis. It plays a crucial role in skin physiology, including the response of keratinocytes to UVR. However, little information is available about its role in photocarcinogenesis.
View Article and Find Full Text PDFAlthough growing evidence indicates that bioenergetic metabolism plays an important role in the progression of tumorigenesis, little information is available on the contribution of reprogramming of energy metabolism in cancer initiation. By applying a quantitative proteomic approach and targeted metabolomics, we find that specific metabolic modifications precede primary skin tumor formation. Using a multistage model of ultraviolet B (UVB) radiation-induced skin cancer, we show that glycolysis, tricarboxylic acid (TCA) cycle, and fatty acid β-oxidation are decreased at a very early stage of photocarcinogenesis, while the distal part of the electron transport chain (ETC) is upregulated.
View Article and Find Full Text PDFThe nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes are involved in several physiological functions. However, their roles in keratinocyte responses to UV radiation have not been clearly elucidated. This study shows that, among other NOX family members, UVB irradiation results in a biphasic activation of NOX1 that plays a critical role in defining keratinocyte fate through the modulation of the DNA damage response network.
View Article and Find Full Text PDFXeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, β-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals.
View Article and Find Full Text PDFp38 mitogen-activated protein kinases (MAPKs) respond to a wide range of extracellular stimuli. While the inhibition of p38 signaling is implicated in the impaired capacity to repair ultraviolet (UV)-induced DNA damage-a primary risk factor for human skin cancers-its mechanism of action in skin carcinogenesis remains unclear, as both anti-proliferative and survival functions have been previously described. In this study, we utilized cultured keratinocytes, murine tumorigenesis models, and human cutaneous squamous cell carcinoma (SCC) specimens to assess the effect of p38 in this regard.
View Article and Find Full Text PDFMitophagy has been recently described as a mechanism of elimination of damaged organelles. Although the regulation of the amount of mitochondria is a core issue concerning cellular energy homeostasis, the relationship between mitochondrial degradation and energetic activity has not yet been considered. Here, we report that the stimulation of mitochondrial oxidative phosphorylation enhances mitochondrial renewal by increasing its degradation rate.
View Article and Find Full Text PDFDNA damage is a well-known initiator of tumorigenesis. Studies have shown that most cancer cells rely on aerobic glycolysis for their bioenergetics. We sought to identify a molecular link between genomic mutations and metabolic alterations in neoplastic transformation.
View Article and Find Full Text PDFThe regulation of DNA repair enzymes is crucial for cancer prevention, initiation, and therapy. We have studied the effect of ultraviolet B (UVB) radiation on the expression of the two nucleotide excision repair factors (XPC and XPD) in human keratinocytes. We show that hypoxia-inducible factor-1alpha (HIF-1alpha) is involved in the regulation of XPC and XPD.
View Article and Find Full Text PDFBackground: The amount of inosine monophosphate dehydrogenase (IMPDH), a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP), is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA) are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42.
View Article and Find Full Text PDFMycophenolate mofetil (MMF) is an immunosuppressive agent used in transplantation. Over the last decade, MMF has also emerged as an alternative therapeutic regimen for autoimmune diseases, mainly for patients refractory to other therapies. The active compound of MMF, mycophenolic acid (MPA), depletes the intracellular pool of guanosine tri-phosphate through inosine monophosphate dehydrogenase blockade.
View Article and Find Full Text PDF