Publications by authors named "Vinzent Boerner"

Background: The GWABLUP (Genome-Wide Association based Best Linear Unbiased Prediction) approach used GWA analysis results to differentially weigh the SNPs in genomic prediction, and was found to improve the reliabilities of genomic predictions. However, the proposed multitrait GWABLUP method assumed that the SNP weights were the same across the traits. Here we extended and validated the multitrait GWABLUP method towards using trait specific SNP weights.

View Article and Find Full Text PDF

Background: Recently, crossbred animals have begun to be used as parents in the next generations of dairy and beef cattle systems, which has increased the interest in predicting the genetic merit of those animals. The primary objective of this study was to investigate three available methods for genomic prediction of crossbred animals. In the first two methods, SNP effects from within-breed evaluations are used by weighting them by the average breed proportions across the genome (BPM method) or by their breed-of-origin (BOM method).

View Article and Find Full Text PDF

Interbull's multiple across-country evaluaftion provides national breeding organizations with breeding values for internationally used bulls, which integrate performance data obtained in different breeding populations, environments, and production systems. However, breeding value-based selection decisions on domestic individuals born to foreign sires can only benefit from Interbull breeding values if they are integrated such that their information can contribute to the breeding values of all related domestic animals. For that purpose, several methods have been proposed which either model Interbull breeding values as prior information in a Bayesian approach, as additional pseudo data points, or as correlated traits, where these methods also differ in their software and parameterization requirements.

View Article and Find Full Text PDF

Economic values for annual milk yield (MY, kg), annual fat yield (FY, kg), annual protein yield (PY, kg), age at first calving (AFC, days), number of services per conception (NSC), calving interval (CI, days) and mastitis episodes (MS) were derived for temperate dairy cattle breeds in tropical Sri Lanka using a bio-economic model. Economic values were calculated on a per cow per year basis. Derived economic values in rupees (LKR) for MY, FY and PY were 107, -162 and -15, while for AFC, NSC, CI and MS, economic values were -59, -270, -84 and -8,303.

View Article and Find Full Text PDF

Objective: This study was conducted to estimate genetic parameters for milk yield traits using daily milk yield records from parlour data generated in an intensively managed commercial dairy farm with Jersey and Jersey-Friesian cows in Sri Lanka.

Methods: Genetic parameters were estimated for first and second lactation predicted and realized 305-day milk yield using univariate animal models. Genetic parameters were also estimated for total milk yield for each 30-day intervals of the first lactation using univariate animal models and for daily milk yield using random regression models fitting second-order Legendre polynomials and assuming heterogeneous residual variances.

View Article and Find Full Text PDF

Multi-trait single step genetic evaluation is increasingly facing the situation of having more individuals with genotypes than markers within each genotype. This creates a situation where the genomic relationship matrix ([Formula: see text]) is not of full rank and its inversion is algebraically impossible. Recently, the SS-T-BLUP method was proposed as a modified version of the single step equations, providing an elegant way to circumvent the inversion of the [Formula: see text] and therefore accommodate the situation described.

View Article and Find Full Text PDF

Quantifying the population stratification in genotype samples has become a standard procedure for data manipulation before conducting genome wide association studies, as well as for tracing patterns of migration in humans and animals, and for inference about extinct founder populations. The most widely used approach capable of providing biologically interpretable results is a likelihood formulation which allows for estimation of founder genome proportions and founder allele frequency conditional on the observed genotypes. However, if founder allele frequencies are known and samples are dominated by admixed genotypes this approach may lead to biased inference.

View Article and Find Full Text PDF

Background: Parentage verification by molecular markers is mainly based on short tandem repeat markers. Single nucleotide polymorphisms (SNPs) as bi-allelic markers have become the markers of choice for genotyping projects. Thus, the subsequent step is to use SNP genotypes for parentage verification as well.

View Article and Find Full Text PDF

Background: The advent of genomic marker data has triggered the development of various Bayesian algorithms for estimation of marker effects, but software packages implementing these algorithms are not readily available, or are limited to a single algorithm, uni-variate analysis or a limited number of factors. Moreover, script based environments like R may not be able to handle large-scale genomic data or exploit model properties which save computing time or memory (RAM).

Results: BESSiE is a software designed for best linear unbiased prediction (BLUP) and Bayesian Markov chain Monte Carlo analysis of linear mixed models allowing for continuous and/or categorical multivariate, repeated and missing observations, various random and fixed factors and large-scale genomic marker data.

View Article and Find Full Text PDF

Background: The major obstacles for the implementation of genomic selection in Australian beef cattle are the variety of breeds and in general, small numbers of genotyped and phenotyped individuals per breed. The Australian Beef Cooperative Research Center (Beef CRC) investigated these issues by deriving genomic prediction equations (PE) from a training set of animals that covers a range of breeds and crosses including Angus, Murray Grey, Shorthorn, Hereford, Brahman, Belmont Red, Santa Gertrudis and Tropical Composite. This paper presents accuracies of genomically estimated breeding values (GEBV) that were calculated from these PE in the commercial pure-breed beef cattle seed stock sector.

View Article and Find Full Text PDF