This study investigated the effect of epiphyton on foliar traits of a submerged rooted macrophyte, , in a shallow freshwater lake, highlighting its influence on the ecological dynamics of littoral zones in aquatic ecosystems. It was shown that the limnological characteristics of the sampling sites (water chlorophyll-a, total suspended matter and coloured dissolved organic matter content) had no significant effect on the average values of epiphytic algal content found on pondweed leaves, while influencing the plasticity of these data. The responses of morphological and physiological traits of submerged macrophytes to accumulated epiphyton demonstrate the complexity of their relationship: epiphyton colonisation had no relevant effect on leaf morphology (except leaf length) and leaf pigment content (except Chl-a/Chl-b ratio), however, this study highlights the significant influence of epiphytic algal biomass on photophysiological traits of submerged macrophyte leaves, as 5 out of 6 photophysiological traits were affected.
View Article and Find Full Text PDFLake Balaton, a large shallow freshwater lake in Hungary, exhibits diverse bacterioplankton communities influenced by various environmental factors. This study aims to evaluate the bacterial diversity in Lake Balaton using the long-read approach to 16 S rRNA gene sequencing. Water samples were collected from a wide network of 33 locations across the lake's four basins and analyzed for bacterial community composition.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Common reed () is a cosmopolitan species, though its dieback is a worldwide phenomenon. In order to assess the evolutionary role of phenotypic plasticity in a successful plant, the values and plasticity of photophysiological traits of were investigated in the Lake Fertő wetlands at 5 sites with different degrees of reed degradation and along a seasonal sequence. On the one hand, along the established ecological degradation gradient, photophysiological traits of changed significantly, affecting plant productivity, although no consistent gradient-type trends were observed.
View Article and Find Full Text PDFThe influence of macrophytes on the optical environment of the littoral zone was assessed by studying the effect of monospecific Potamogeton perfoliatus on the quantitative and qualitative properties of light and the response of plants to this altered environment. P. perfoliatus was shown to alter the optical environment and consequently its own architecture: in high-density pondweed patches, 67 percent of incident light was absorbed in the top 10 cm, while spectral properties of light was significantly altered.
View Article and Find Full Text PDFGigascience
December 2022
Conflicts and natural disasters affect entire populations of the countries involved and, in addition to the thousands of lives destroyed, have a substantial negative impact on the scientific advances these countries provide. The unprovoked invasion of Ukraine by Russia, the devastating earthquake in Turkey and Syria, and the ongoing conflicts in the Middle East are just a few examples. Millions of people have been killed or displaced, their futures uncertain.
View Article and Find Full Text PDFBackground: Macrophytes are key players in aquatic ecosystems diversity, but knowledge on variability of their functional traits, among and within species, is still limited. Remote sensing is a high-throughput, feasible option for characterizing plant traits at different scales, provided that reliable spectroscopy models are calibrated with congruous empirical data, but existing applications are biased towards terrestrial plants. We sampled leaves from six floating and emergent macrophyte species common in temperate areas, covering different phenological stages, seasons, and environmental conditions, and measured leaf reflectance (400-2500 nm) and leaf traits (dealing with photophysiology, pigments, and structure).
View Article and Find Full Text PDFThe relationship between invasive plant functional traits and their invasiveness is still the subject of scientific investigation, and the backgrounds of transition from non-native to invasive species in ecosystems are therefore poorly understood. Furthermore, our current knowledge on species invasiveness is heavily biased toward terrestrial species; we know much less about the influence of allochthonous plant traits on their invasiveness in aquatic ecosystems. In this paper, we present the results of a study on physiological and ecological traits of two introduced and three native macrophyte species in the Mantua lakes system (northern Italy).
View Article and Find Full Text PDFFront Plant Sci
June 2018
Littoral zones of freshwater lakes are exposed to environmental impacts from both terrestrial and aquatic sides, while substantial anthropogenic pressure also affects the high spatial, and temporal variability of the ecotone. In this study, the possibility of monitoring seasonal and spatial changes in reed () stands using an unmanned aerial vehicle (UAV) based remote sensing technique was examined. Stands in eutrophic and mesotrophic parts of Lake Balaton including not deteriorating (stable) and deteriorating (die-back) patches, were tracked throughout the growing season using a UAV equipped with a Normalized Difference Vegetation Index (NDVI) camera.
View Article and Find Full Text PDFEutrophication and enhanced external nutrient loading of lakes and seas are most clearly reflected by increased cyanobacterial blooms, which are often toxic. Freshwater cyanobacteria produce a number of bioactive secondary metabolites, some of which have allelopathic properties, significantly influencing the biological processes of other algae, thereby affecting species composition and succession of the phytoplankton. The goal of this work was to investigate the influence of bloom-forming cyanobacterial exudates on the photophysiology of the green alga Scenedesmus quadricauda by chlorophyll fluorescence analysis.
View Article and Find Full Text PDFSensors (Basel)
September 2015
Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output.
View Article and Find Full Text PDF