Publications by authors named "Vijaya Raghavan Rangamaran"

This study explores the potential of quorum-quenching (QQ) enzymes from deep-sea bacteria to disrupt bacterial communication and biofilm formation. Among 21 psychrophilic marine isolates, Vibrio sp. strain SAT06 showed broad-spectrum QQ activity by degrading both short (C-HSL) and long-chain (3-O-C-HSL) acyl homoserine lactones.

View Article and Find Full Text PDF

Arabian Sea is a highly productive Ocean owing to deep upwelling with reports on phosphorus cycling in ocean sediments. In this study, microbes from sea mounts of the Arabian Sea at varying depths (400 m, 900 m) were screened to isolate and characterize phosphate-solubilizing bacteria (PSB) with plant growth-promoting properties. Out of the seven morphologically different PSBs, two bacterial strains with maximum phosphate solubilization index were identified as Priestia megaterium (H1) and Bacillus velezensis (H2) based on biochemical and molecular characteristics.

View Article and Find Full Text PDF

Deep-sea sediments provide important information on oceanic biogeochemical processes mediated by the microbiome and their functional roles which could be unravelled using genomic tools. The present study aimed to delineate microbial taxonomic and functional profiles from Arabian Sea sediment samples through whole metagenome sequencing using Nanopore technology. Arabian Sea is considered as a major microbial reservoir with significant bio-prospecting potential which needs to be explored extensively using recent advances in genomics.

View Article and Find Full Text PDF
Article Synopsis
  • - The Bay of Bengal is ecologically important and has valuable natural resources, but research on the microbial diversity in its sediment is limited.
  • - By using Nanopore sequencing to analyze deep-sea sediment samples, the study found that bacteria from the Proteobacteria phylum are the most prevalent in certain samples.
  • - The findings suggest that microbial communities in the Bay of Bengal are capable of processes like carbon fixation and bioremediation, highlighting the area's potential for further scientific exploration.
View Article and Find Full Text PDF

Arabian Sea harbours one of the largest oxygen minimal zones (OMZs) among the global oceans wherein biogeochemical cycles are regulated through dominant and complex microbial processes. The present study investigated the bacterial communities at various depths of the Arabian Sea OMZ using high-throughput sequencing of the v3-v4 hyper variable region of 16S rRNA gene. A total of 10 samples which included water samples from 8 different depths and 2 sediment samples were analyzed in this study.

View Article and Find Full Text PDF

Environmental pollution has emerged to be a major hazard in today's world. Pollutants from varied sources cause harmful effects to the ecosystem. The major pollutants across marine and terrestrial regions are hydrocarbons, plastics, and dyes.

View Article and Find Full Text PDF

Biocalcification or microbially induced carbonate precipitation (MICP) is gaining attention from the research fraternity, primarily ascribed to their eco-friendly applications. Bacterial strains have been isolated from various sources and their ability to precipitate carbonate has been studied extensively. In spite of the fact that the deep-sea environment is a potential source for bioprospecting, meager reports exist on the isolation of biocalcifying bacterial strains from deep-sea.

View Article and Find Full Text PDF

The present study was undertaken to evaluate the microbial composition of farmed cobia pompano and milkfish, reared in sea-cages by culture-independent methods. This study would serve as a basis for assessing the general health of fish, identifying the dominant bacterial species present in the gut for future probiotic work and in early detection of potential pathogens. High-throughput sequencing of V3-V4 hyper variable regions of 16S rDNA on Illumina MiSeq platform facilitated unravelling of composite bacterial population.

View Article and Find Full Text PDF

Marine actinobacteria are known to be a rich source for novel metabolites with diverse biological activities. In this study, a potential extracellular L-asparaginase was characterised from the Streptomyces griseus NIOT-VKMA29. Box-Behnken based optimization was used to determine the culture medium components to enhance the L-asparaginase production.

View Article and Find Full Text PDF

The present study was aimed at randomly mutating the microalga, Chlorella vulgaris, in order to alter its cellular behaviour towards increased lipid production for efficient biodiesel production from algal biomass. Individual mutants from ultraviolet light (UV-1 (30 s exposure), UV-2 (60 s exposure) and UV-3 (90 s exposure)) and 5'fluorodeoxyuridine (5'FDU-1 (0.25 mM) and 5'FDU-2 (0.

View Article and Find Full Text PDF