We have previously demonstrated that iron overload in hepatic reticuloendothelial system cells (RES) is associated with severe nonalcoholic steatohepatitis (NASH) and advanced fibrosis in patients with nonalcoholic fatty liver disease (NAFLD). Recruited myeloid-derived macrophages have gained a pivotal position as drivers of NASH progression and fibrosis. In this study, we used bone marrow-derived macrophages (BMDM) from C57Bl6 mice as surrogates for recruited macrophages and examined the effect of iron on macrophage polarization.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. We have previously shown that hepatic reticuloendothelial system (RES) iron deposition is associated with an advanced degree of nonalcoholic steatohepatitis (NASH) in humans. In this study, we aimed to determine differentially expressed genes related to iron overload, inflammation and oxidative stress pathways, with the goal of identifying factors associated with NASH progression.
View Article and Find Full Text PDFAm J Gastroenterol
June 2016
Objectives: The objective of this study was to determine the relationship of serum vitamin D deficiency (VDD) to histologic features of non-alcoholic fatty liver disease (NAFLD), and associated demographic, clinical, laboratory, and transcriptomic data in the well-characterized Non-alcoholic Steatohepatitis Clinical Research Network (NASH CRN) cohort.
Methods: Serum vitamin D 25(OH)D (VD) was quantified by liquid chromatography-tandem mass spectrometry in 190 adults (>18 years) with biopsy-proven NAFLD. Subjects were categorized according to their level of VD as either sufficient (>30 ng/ml), insufficient (≥20≤30 ng/ml), or deficient (VDD; <20 ng/ml).
Am J Physiol Gastrointest Liver Physiol
January 2016
The aim of this study was to determine the effect of iron overload in the development of nonalcoholic steatohepatitis (NASH) in a genetically obese mouse model (Lepr(db/db)). Leptin receptor-deficient mice were fed a normal or an iron-supplemented chow for 8 wk and switched to normal chow for 8 wk. All dietary iron (DI)-fed mice developed hepatic iron overload predominantly in the reticuloendothelial system.
View Article and Find Full Text PDFUnlabelled: Obesity and adiponectin depletion have been associated with the occurrence of nonalcoholic fatty liver disease (NAFLD). The goal of this study was to identify the relationship between weight gain, adiponectin signaling, and development of nonalcoholic steatohepatitis (NASH) in an obese, diabetic mouse model. Leptin-receptor deficient (Lepr(db/db) ) and C57BL/6 mice were administered a diet high in unsaturated fat (HF) (61%) or normal chow for 5 or 10 weeks.
View Article and Find Full Text PDFContext: Inhalation of fine particulate matter (PM₂.₅) is associated with acute pulmonary inflammation and impairments in cardiovascular function. In many regions, PM₂.
View Article and Find Full Text PDFActivation of AMP-activated protein kinase (AMPK) signaling reduces hepatic steatosis and hepatic insulin resistance; however, its regulatory mechanisms are not fully understood. In this study, we sought to determine whether vasodilator-stimulated phosphoprotein (VASP) signaling improves lipid metabolism in the liver and, if so, whether VASP's effects are mediated by AMPK. We show that disruption of VASP results in significant hepatic steatosis as a result of significant impairment of fatty acid oxidation, VLDL-triglyceride (TG) secretion, and AMPK signaling.
View Article and Find Full Text PDFFree Radic Biol Med
September 2012
Oxidative stress has been implicated in the development of vascular disease and in the promotion of endothelial dysfunction via the reduction in bioavailable nitric oxide (NO()). Glutathione (GSH) is a tripeptide thiol antioxidant that is utilized by glutathione peroxidase (GPx) to scavenge reactive oxygen species such as hydrogen peroxide and phospholipid hydroperoxides. Relatively frequent single-nucleotide polymorphisms (SNPs) within the 5' promoters of the GSH synthesis genes GCLC and GCLM are associated with impaired vasomotor function, as measured by decreased acetylcholine-stimulated coronary artery dilation, and with increased risk of myocardial infarction.
View Article and Find Full Text PDFObjective: Proinflammatory activation of Kupffer cells is implicated in the effect of high-fat feeding to cause liver insulin resistance. We sought to determine whether reduced endothelial nitric oxide (NO) signaling contributes to the effect of high-fat feeding to increase hepatic inflammatory signaling and if so, whether this effect 1) involves activation of Kupffer cells and 2) is ameliorated by increased NO signaling.
Research Design And Methods: Effect of NO/cGMP signaling on hepatic inflammation and on isolated Kupffer cells was examined in C57BL/6 mice, eNos(-/-) mice, and Vasp(-/-) mice fed a low-fat or high-fat diet.
Arterioscler Thromb Vasc Biol
December 2011
Objective: Obesity is characterized by chronic inflammation of adipose tissue, which contributes to insulin resistance and diabetes. Although nitric oxide (NO) signaling has antiinflammatory effects in the vasculature, whether reduced NO contributes to adipose tissue inflammation is unknown. We sought to determine whether (1) obesity induced by high-fat (HF) diet reduces endothelial nitric oxide signaling in adipose tissue, (2) reduced endothelial nitric oxide synthase (eNOS) signaling is sufficient to induce adipose tissue inflammation independent of diet, and (3) increased cGMP signaling can block adipose tissue inflammation induced by HF feeding.
View Article and Find Full Text PDFThe Fas death receptor (CD95) is expressed on macrophages, smooth muscle cells, and T cells within atherosclerotic lesions. Given the dual roles of Fas in both apoptotic and nonapoptotic signaling, the aim of the present study was to test the effect of hematopoietic Fas deficiency on experimental atherosclerosis in low-density lipoprotein receptor-null mice (Ldlr(-/-)). Bone marrow from Fas(-/-) mice was used to reconstitute irradiated Ldlr(-/-) mice as a model for atherosclerosis.
View Article and Find Full Text PDFBackground: Severe sepsis and septic shock are major causes of morbidity and mortality worldwide. In experimental sepsis there is prominent apoptosis of various cell types, and genetic manipulation of death and survival pathways has been shown to modulate organ injury and survival.
Methodology/principal Findings: We investigated the effect of extracellular administration of two anti-apoptotic members of the BCL2 (B-cell lymphoma 2) family of intracellular regulators of cell death in a murine model of sepsis induced by cecal ligation and puncture (CLP).
Background: Ischemia-reperfusion (I/R) injury contributes to organ dysfunction in a variety of clinical disorders, including myocardial infarction, stroke, organ transplantation, and hemorrhagic shock. Recent investigations have demonstrated that apoptosis as an important mechanism of cell death leading to organ dysfunction following I/R. Intracellular danger-associated molecular patterns (DAMPs) released during cell death can activate cytoprotective responses by engaging receptors of the innate immune system.
View Article and Find Full Text PDFJ Immunol
September 2003