Publications by authors named "Veronica D Gonzalez"

Tubo-ovarian high-grade serous carcinoma (HGSC), the most lethal gynecologic malignancy, initially responds to platinum-based chemotherapy, but due to frequent defects in the DNA damage response (DDR), most tumors develop resistance. The molecular mechanisms underlying clinical platinum resistance remain poorly defined with no biomarkers or targeted therapies to improve outcomes. Here, applying mass cytometry, we quantify phosphorylation and abundance of DDR proteins in carboplatin-treated HGSC cell line models.

View Article and Find Full Text PDF
Article Synopsis
  • - Tubo-ovarian high-grade serous carcinoma (HGSC) is a highly lethal form of cancer that often responds to platinum-based chemotherapy due to common issues with DNA damage repair pathways.
  • - Current mechanisms behind platinum resistance in HGSC are complex and not well understood, leading to a lack of effective biomarkers or treatments to improve patient outcomes.
  • - The study uses advanced single-cell mass cytometry to analyze protein responses in HGSC cells, identifying eight specific protein modules linked to carboplatin resistance and sensitivity, which could help in better categorizing and treating drug resistance in patients.
View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. Its diagnosis at advanced stage compounded with its excessive genomic and cellular heterogeneity make curative treatment challenging. Two critical therapeutic challenges to overcome are carboplatin resistance and lack of response to immunotherapy.

View Article and Find Full Text PDF

In aging, skeletal muscle strength and regenerative capacity decline, due in part to functional impairment of muscle stem cells (MuSCs), yet the underlying mechanisms remain elusive. Here, we capitalize on mass cytometry to identify high CD47 expression as a hallmark of dysfunctional MuSCs (CD47) with impaired regenerative capacity that predominate with aging. The prevalent CD47 MuSC subset suppresses the residual functional CD47 MuSC subset through a paracrine signaling loop, leading to impaired proliferation.

View Article and Find Full Text PDF

Barcoding and pooling cells for processing as a composite sample are critical to minimize technical variability in multiplex technologies. Fluorescent cell barcoding has been established as a standard method for multiplexing in flow cytometry analysis. In parallel, mass-tag barcoding is routinely used to label cells for mass cytometry.

View Article and Find Full Text PDF

Trogocytosis is an active transport mechanism by which one cell extracts a plasma membrane fragment with embedded molecules from an adjacent cell in a contact-dependent process leading to the acquisition of a new function. Our protocol, which has general applicability, consolidates and optimizes existing protocols while highlighting key experimental variables to demonstrate that natural killer (NK) cells acquire the tetraspanin CD9 by trogocytosis from ovarian tumor cells. For complete details on the use and execution of this protocol, please refer to Gonzalez et al.

View Article and Find Full Text PDF

Mass cytometry aka Cytometry by Time-Of-Flight (CyTOF) is one of several recently developed multiparametric single-cell technologies designed to address cellular heterogeneity within healthy and diseased tissue. Mass cytometry is an adaptation of flow cytometry in which antibodies are labeled with stable heavy metal isotopes and the readout is by time-of-flight mass spectrometry. With minimal spillover between channels, mass cytometry enables readouts of up to 60 parameters per single cell.

View Article and Find Full Text PDF

Tubo-ovarian high-grade serous carcinoma (HGSC) is unresponsive to immune checkpoint blockade despite significant frequencies of exhausted T cells. Here we apply mass cytometry and uncover decidual-like natural killer (dl-NK) cell subpopulations (CD56+CD9+CXCR3+KIR+CD3-CD16-) in newly diagnosed HGSC samples that correlate with both tumor and transitioning epithelial-mesenchymal cell abundance. We show different combinatorial expression patterns of ligands for activating and inhibitory NK receptors within three HGSC tumor compartments: epithelial (E), transitioning epithelial-mesenchymal (EV), and mesenchymal (vimentin expressing [V]), with a more inhibitory ligand phenotype in V cells.

View Article and Find Full Text PDF

HIV-1 infection expands large populations of late-stage differentiated CD8 T cells that may persist long after viral escape from TCR recognition. In this study, we investigated whether such CD8 T cell populations can perform unconventional innate-like antiviral effector functions. Chronic untreated HIV-1 infection was associated with elevated numbers of CD45RACD57 terminal effector CD8 T cells expressing FcγRIIIA (CD16).

View Article and Find Full Text PDF

HIV infection is controlled immunologically in a small subset of infected individuals without antiretroviral therapy (ART), though the mechanism of control is unclear. CD8 T cells are a critical component of HIV control in many immunological controllers. NK cells are also believed to have a role in controlling HIV infection, though their role is less well characterized.

View Article and Find Full Text PDF

We have performed an in-depth single-cell phenotypic characterization of high-grade serous ovarian cancer (HGSOC) by multiparametric mass cytometry (CyTOF). Using a CyTOF antibody panel to interrogate features of HGSOC biology, combined with unsupervised computational analysis, we identified noteworthy cell types co-occurring across the tumors. In addition to a dominant cell subset, each tumor harbored rarer cell phenotypes.

View Article and Find Full Text PDF

Mass cytometry (or CyTOF) is an atomic mass spectrometry-based single-cell immunoassay technology, which has provided an increasingly systematic and sophisticated view in basic biological and clinical studies. Using elemental reporters composed of stable heavy metal isotopes, more than 50 cellular parameters are measured simultaneously. However, this current multiplexing does not meet the theoretical capability of CyTOF instrumentation with 135 detectable channels, primarily due to the limitation of available chemistries for conjugating elemental mass tags to affinity reagents.

View Article and Find Full Text PDF

To quantify visual and spatial information in single cells with a throughput of thousands of cells per second, we developed Subcellular Localization Assay (SLA). This adaptation of Proximity Ligation Assay expands the capabilities of flow cytometry to include data relating to localization of proteins to and within organelles. We used SLA to detect the nuclear import of transcription factors across cell subsets in complex samples.

View Article and Find Full Text PDF

Background: P35 and P22 Toxoplasma gondii proteins are recognized by specific IgG at the early infection stage, making them ideal for acute toxoplasmosis pregnancy control. Both proteins have been studied to discriminate between acute and chronic toxoplasmosis. However, results were hardly comparable because different protein obtainment procedures led to different antigens, the reference panels used were not optimally typified, and avidity tests were either not performed or narrowly examined.

View Article and Find Full Text PDF

NK cells play an important role in the defense against viral infections. However, little is known about the regulation of NK cell responses during the first days of acute viral infections in humans. In this study, we used the live attenuated yellow fever virus (YFV) vaccine 17D as a human in vivo model to study the temporal dynamics and regulation of NK cell responses in an acute viral infection.

View Article and Find Full Text PDF

Mass-tag cell barcoding (MCB) labels individual cell samples with unique combinatorial barcodes, after which they are pooled for processing and measurement as a single multiplexed sample. The MCB method eliminates variability between samples in antibody staining and instrument sensitivity, reduces antibody consumption and shortens instrument measurement time. Here we present an optimized MCB protocol.

View Article and Find Full Text PDF

Objective: To evaluate the diagnostic performance of novel latex-protein complexes obtained from different antigens of Trypanosoma cruzi through immunoagglutination test using a panel of T. cruzi-positive sera, leishmaniasis-positive sera and negative sera for both parasites.

Methods: Complexes' behaviour using total parasite homogenate (TPH), two simple recombinant proteins (RP1 and RP5) and two chimeric recombinant proteins (CP1 and CP2) was comparatively evaluated.

View Article and Find Full Text PDF

The synthesis and characterization of latex-protein complexes (LPC), from the acute phase recombinant antigen P35 (P35Ag) of Toxoplasma gondii and "core-shell" carboxylated or polystyrene (PS) latexes (of different sizes and charge densities) are considered, with the aim of producing immunoagglutination reagents able to detect recently acquired toxoplasmosis. Physical adsorption (PA) and chemical coupling (CC) of P35Ag onto latex particles at different pH were investigated. Greater amounts of adsorbed protein were obtained on PS latexes than on carboxylated latexes, indicating that hydrophobic forces govern the interactions between the protein and the particle surface.

View Article and Find Full Text PDF

Objective: To determine the conditions under which the immunoagglutination assay to detect Chagas disease, obtained from a novel latex-(chimeric recombinant antigen) complex, shows greater discrimination between the responses of a positive control serum and a negative control serum.

Methods: The following variables were determined: (i) the sensitisation mechanism, (ii) the emulsifier employed for protein desorption, (iii) the reaction time, (iv) the ionic strength of the reaction medium, (v) the particle concentration, (vi) the presence of blocking agents, (vii) the presence of polyethyleneglycol as potentiator of reaction and (viii) the antigen and antibody concentrations. The search of optimal conditions was investigated by varying one variable at a time.

View Article and Find Full Text PDF

This paper presents an optical method for real-time monitoring of protein adsorption using porous silicon self-supported microcavities as a label-free detection platform. The study combines an experimental approach with a physical model for the adsorption process. The proposed model agrees well with experimental observations, and provides information about the kinetics of diffusion and adsorption of proteins within the pores, which will be useful for future experimental designs.

View Article and Find Full Text PDF

HIV-1 subtype D is associated with faster disease progression compared with subtype A. Immunological correlates of this difference remain undefined. We investigated invariant natural killer T (iNKT) cells and FoxP3⁺ regulatory T cells (Tregs) in Ugandans infected with either subtype.

View Article and Find Full Text PDF

The live attenuated yellow fever virus (YFV) 17D vaccine provides a good model to study immune responses to an acute viral infection in humans. We studied the temporal dynamics, composition, and character of the primary human T cell response to YFV. The acute YFV-specific effector CD8 T cell response was broad and complex; it was composed of dominant responses that persisted into the memory population, as well as of transient subdominant responses that were not detected at the memory stage.

View Article and Find Full Text PDF

The physical adsorption and the chemical coupling of recombinant proteins of Trypanosoma cruzi onto polystyrene and core-shell carboxylated particles were respectively investigated with the ultimate aim of producing latex-protein complexes to be used in an immunoagglutination assay able to detect the Chagas disease. To this effect, two single proteins (RP1 and RP5) and a multiepitope protein derived from three antigenic peptides (CP2) were evaluated, and sensitizations were carried out at different pHs. The maximum physical adsorption was produced at pHs close to the protein isoelectric point (i.

View Article and Find Full Text PDF

Background & Aims: Polymorphisms in the IL28B gene have been associated with clearance of hepatitis C virus (HCV), indicating a role for type III interferons (IFNs) in HCV infection. Little is known about the function of type III IFNs in intrinsic antiviral innate immunity.

Methods: We used in vivo and in vitro models to characterize the role of the type III IFNs in HCV infection and analyzed gene expression in liver biopsy samples from HCV-infected chimpanzees and patients.

View Article and Find Full Text PDF