Publications by authors named "Vandre C Figueiredo"

Objectives: Unlike traditional anti-inflammatory therapies which may interfere with musculoskeletal tissue repair, pharmacological administration of specialized pro-resolving lipid mediators (SPMs) promotes timely resolution of inflammation while stimulating skeletal muscle regeneration. Despite this, the potential role of endogenous inflammation-resolution circuits in skeletal muscle injury and repair remains unknown.

Methods: We investigated the effect of whole-body knockout of leukocyte-type 12/15-lipoxygenase (12/15-LOX) on acute inflammation and regeneration in vivo following skeletal muscle injury in mice.

View Article and Find Full Text PDF

Unlike traditional anti-inflammatory therapies which may interfere with musculoskeletal tissue repair, pharmacological administration of specialized pro-resolving lipid mediators (SPMs) can promote timely resolution of inflammation while stimulating skeletal muscle regeneration. Despite this, the potential role of endogenous inflammation-resolution circuits in skeletal muscle injury and repair remains unknown. Here, we investigated the effect of whole-body knockout of leukocyte-type 12/15-lipoxygenase (12/15-LOX) on acute inflammation and regeneration following skeletal muscle injury in mice.

View Article and Find Full Text PDF

Context: Sarcopenia and cachexia lead to muscle wasting and increased health risks in older adults. Both sarcopenia and cachexia are associated with inflammaging, a chronic low-grade inflammatory state linked to aging. Strategies to preserve muscle mass and function are crucial for maintaining independence and quality of life among the elderly.

View Article and Find Full Text PDF

A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery.

View Article and Find Full Text PDF

In cell biology, ribosomal RNA (rRNA) 2'-methyl (2'--Me) is the most prevalent posttranscriptional chemical modification contributing to ribosome heterogeneity. The modification involves a family of small nucleolar RNAs (snoRNAs) and is specified by box C/D snoRNAs (SNORDs). Given the importance of ribosome biogenesis for skeletal muscle growth, we asked if rRNA 2'--Me in nascent ribosomes synthesized in response to a growth stimulus is an unrecognized mode of ribosome heterogeneity in muscle.

View Article and Find Full Text PDF

Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected.

View Article and Find Full Text PDF

The central dogma of molecular biology dictates the general flow of molecular information from DNA that leads to a functional cellular outcome. In skeletal muscle fibers, the extent to which global myonuclear transcriptional alterations, accounting for epigenetic and post-transcriptional influences, contribute to an adaptive stress response is not clearly defined. In this investigation, we leveraged an integrated analysis of the myonucleus-specific DNA methylome and transcriptome, as well as myonuclear small RNA profiling to molecularly define the early phase of skeletal muscle fiber hypertrophy.

View Article and Find Full Text PDF

Cold water immersion (CWI) following intense exercise is a common athletic recovery practice. However, CWI impacts muscle adaptations to exercise training, with attenuated muscle hypertrophy and increased angiogenesis. Tissue temperature modulates the abundance of specific miRNA species and thus CWI may affect muscle adaptations via modulating miRNA expression following a bout of exercise.

View Article and Find Full Text PDF

Purpose: Mitochondrial dynamics are regulated by the differing molecular pathways variously governing biogenesis, fission, fusion, and mitophagy. Adaptations in mitochondrial morphology are central in driving the improvements in mitochondrial bioenergetics following exercise training. However, there is a limited understanding of mitochondrial dynamics in response to inactivity.

View Article and Find Full Text PDF

Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris.

View Article and Find Full Text PDF

With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated β-galactosidase (SA β-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age.

View Article and Find Full Text PDF

Many of the molecular and cellular mechanisms discovered to regulate skeletal muscle hypertrophy were first identified using the rodent synergist ablation model. This model reveals the intrinsic capability and necessary pathways of skeletal muscle growth in response to mechanical overload (MOV). Reminiscent of the rapid cellular growth observed with cancer, we hypothesized that in response to MOV, skeletal muscle would undergo metabolic programming to sustain increased demands to support hypertrophy.

View Article and Find Full Text PDF

Mitochondrial-derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis, and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown.

View Article and Find Full Text PDF

Cancer cachexia afflicts many advanced cancer patients with many progressing to death. While there have been many advancements in understanding the molecular mechanisms that contribute to the development of cancer cachexia, substantial gaps still exist. Chemotherapy drugs often target ribosome biogenesis to slow or blunt tumor cell growth and proliferation.

View Article and Find Full Text PDF

Aim: To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP).

Method: Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed.

View Article and Find Full Text PDF

Satellite cells are required for postnatal development, skeletal muscle regeneration across the lifespan, and skeletal muscle hypertrophy prior to maturity. Our group has aimed to address whether satellite cells are required for hypertrophic growth in mature skeletal muscle. Here, we generated a comprehensive characterization and transcriptome-wide profiling of skeletal muscle during adaptation to exercise in the presence or absence of satellite cells in order to identify distinct phenotypes and gene networks influenced by satellite cell content.

View Article and Find Full Text PDF

Key Points: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter.

View Article and Find Full Text PDF

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alter mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance.

View Article and Find Full Text PDF

Background: Translational capacity (i.e. ribosomal mass) is a key determinant of protein synthesis and has been associated with skeletal muscle hypertrophy.

View Article and Find Full Text PDF

The "canonical" function of Pax7+ muscle stem cells (satellite cells) during hypertrophic growth of adult muscle fibers is myonuclear donation via fusion to support increased transcriptional output. In recent years, however, emerging evidence suggests that satellite cells play an important secretory role in promoting load-mediated growth. Utilizing genetically modified mouse models of delayed satellite cell fusion and extracellular vesicle (EV) tracking, we provide evidence for satellite cell communication to muscle fibers during hypertrophy.

View Article and Find Full Text PDF

Regular postexercise cooling attenuates muscle hypertrophy, yet its effects on the key molecular factors that regulate muscle growth and remodeling are not well characterized. In the present study, nine men completed two sessions of single-leg resistance exercise on separate days. On 1 day, they sat in cold water (10°C) up to their waist for 10 min after exercise.

View Article and Find Full Text PDF

To date, studies that have aimed to investigate the role of satellite cells during adult skeletal muscle adaptation and hypertrophy have utilized a nontranslational stimulus and/or have been performed over a relatively short time frame. Although it has been shown that satellite cell depletion throughout adulthood does not drive skeletal muscle loss in sedentary mice, it remains unknown how satellite cells participate in skeletal muscle adaptation to long-term physical activity. The current study was designed to determine whether reduced satellite cell content throughout adulthood would influence the transcriptome-wide response to physical activity and diminish the adaptive response of skeletal muscle.

View Article and Find Full Text PDF