In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt stress and as biostimulants modulating tomato yield and quality traits. The treatments of tomato plants with femtomolar amounts of the peptides alleviated salt stress symptoms, likely due to an increase in root biomass up to 18% and the upregulation of key antioxidant genes such as APX2 and HSP90.
View Article and Find Full Text PDFThe in-depth studies over the years on the defence barriers by tomato plants have shown that the Systemin peptide controls the response to a wealth of environmental stress agents. This multifaceted stress reaction seems to be related to the intrinsic disorder of its precursor protein, Prosystemin (ProSys). Since latest findings show that ProSys has biological functions besides Systemin sequence, here we wanted to assess if this precursor includes peptide motifs able to trigger stress-related pathways.
View Article and Find Full Text PDFComput Struct Biotechnol J
November 2023
[This corrects the article DOI: 10.1016/j.csbj.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2022
Tomato Prosystemin (ProSys), the precursor of Systemin, a small peptidic hormone, is produced at very low concentration in unchallenged plants, while its expression greatly increases in response to several different stressors triggering an array of defence responses. The molecular mechanisms that underpin such a wide array of defence barriers are not fully understood and are likely correlated with the intrinsically disordered (ID) structure of the protein. ID proteins interact with different protein partners forming complexes involved in the modulation of different biological mechanisms.
View Article and Find Full Text PDF