Publications by authors named "Tyler D Eddy"

In the Northwest Atlantic Ocean, northern shrimp (Pandalus borealis) play key ecological roles as mid-trophic level consumers and as prey to higher-trophic level predators, including commercial fish species. However, the effects of changing environmental conditions and biological processes on trophic interactions in sub-Arctic ecosystems, particularly on lipid storage and nutrient transfer from intermediate to high trophic levels, remain unclear. Biochemical tracer methods (i.

View Article and Find Full Text PDF

Marine biodiversity loss is a pressing global issue, intensified by human activities and climate change. Complementary to marine protected areas (MPAs), Other Effective Area-Based Conservation Measures (OECMs) have emerged as a key tool to mitigate this loss by providing long-term biodiversity protection. However, while OECMs primarily target specific taxa, they can also offer indirect biodiversity conservation benefits (BCBs) to a wider range of taxa.

View Article and Find Full Text PDF

Canadian fisheries management has embraced the precautionary approach and the incorporation of ecosystem information into decision-making processes. Accurate estimation of fish stock biomass is crucial for ensuring sustainable exploitation of marine resources. Spatio-temporal models can provide improved indices of biomass as they capture spatial and temporal correlations in data and can account for environmental factors influencing biomass distributions.

View Article and Find Full Text PDF
Article Synopsis
  • Marine animal biomass is projected to decline in the 21st century due to climate change, impacting apex predators more significantly through a process called trophic amplification.
  • Using simulations from nine marine ecosystem models, researchers found that consumer biomass could decrease by 16.7% more than net primary production by the end of the century, with major variations across different regions.
  • The study highlights complex responses within marine food webs, emphasizing the need for improved models to understand and predict the ecological consequences of climate change on marine ecosystems.
View Article and Find Full Text PDF

Sharks and rays are key functional components of coral reef ecosystems, yet many populations of a few species exhibit signs of depletion and local extinctions. The question is whether these declines forewarn of a global extinction crisis. We use IUCN Red List to quantify the status, trajectory, and threats to all coral reef sharks and rays worldwide.

View Article and Find Full Text PDF

Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania).

View Article and Find Full Text PDF

Projections of climate change impacts on marine ecosystems have revealed long-term declines in global marine animal biomass and unevenly distributed impacts on fisheries. Here we apply an enhanced suite of global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), forced by new-generation Earth system model outputs from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), to provide insights into how projected climate change will affect future ocean ecosystems. Compared with the previous generation CMIP5-forced Fish-MIP ensemble, the new ensemble ecosystem simulations show a greater decline in mean global ocean animal biomass under both strong-mitigation and high-emissions scenarios due to elevated warming, despite greater uncertainty in net primary production in the high-emissions scenario.

View Article and Find Full Text PDF

Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates.

View Article and Find Full Text PDF

Transfer efficiency is the proportion of energy passed between nodes in food webs. It is an emergent, unitless property that is difficult to measure, and responds dynamically to environmental and ecosystem changes. Because the consequences of changes in transfer efficiency compound through ecosystems, slight variations can have large effects on food availability for top predators.

View Article and Find Full Text PDF

There remain parts of our planet that are seldom visited by humans, let alone scientists. In such locations, crowd-sourced or citizen scientist data can be critical in describing biodiversity and detecting change. Rangitāhua, the Kermadec Islands, are 750 km from the nearest human-habitation.

View Article and Find Full Text PDF

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web.

View Article and Find Full Text PDF

The Galápagos Archipelago is home to a diverse range of marine bioregions due to the confluence of several cold and warm water currents, resulting in some of the most productive tropical marine ecosystems in the world. These ecosystems are strongly influenced by El Niño events which can reduce primary production by an order of magnitude, dramatically reducing energy available throughout the food web. Fisheries are an important component of the local economy, although artisanal and illegal overfishing have dramatically reduced the productivity of invertebrate and finfish resources in recent decades, resulting in reductions in catches for local fishers.

View Article and Find Full Text PDF

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions.

View Article and Find Full Text PDF

Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.

View Article and Find Full Text PDF
Article Synopsis
  • - Fisheries and aquaculture are vital for global food security, nutrition, and livelihoods, but the UN's Sustainable Development Goals treat marine and terrestrial food systems separately, making it essential to recognize their interconnections.
  • - Countries reliant on fisheries face unique challenges related to climate change, which could worsen outcomes in both fisheries and agriculture, requiring strategies that consider the trade-offs between food production, biodiversity, and climate goals.
  • - To address these challenges, particularly in nations with low adaptive capacity, effective governance, improved management, innovative food production methods, and equitable resource distribution are necessary for sustainable development.
View Article and Find Full Text PDF

Coastal ecosystems are among the most productive yet increasingly threatened marine ecosystems worldwide. Particularly vegetated habitats, such as eelgrass (Zostera marina) beds, play important roles in providing key spawning, nursery and foraging habitats for a wide range of fauna. To properly assess changes in coastal ecosystems and manage these critical habitats, it is essential to develop sound monitoring programs for foundation species and associated assemblages.

View Article and Find Full Text PDF

Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification.

View Article and Find Full Text PDF

Over-exploited fisheries are a common feature of the modern world and a range of solutions including area closures (marine reserves; MRs), effort reduction, gear changes, ecosystem-based management, incentives and co-management have been suggested as techniques to rebuild over-fished populations. Historic accounts of lobster (Jasus frontalis) on the Chilean Juan Fernández Archipelago indicate a high abundance at all depths (intertidal to approximately 165 m), but presently lobsters are found almost exclusively in deeper regions of their natural distribution. Fishers' ecological knowledge (FEK) tells a story of serial depletion in lobster abundance at fishing grounds located closest to the fishing port with an associated decline in catch per unit effort (CPUE) throughout recent history.

View Article and Find Full Text PDF