Publications by authors named "Tyler A Elliott"

Background: Flies (Diptera) are an ecologically important group that play a role in agriculture, public health and ecosystem functioning. As researchers continue to investigate this order, it is beneficial to link the growing occurrence data to biological traits. However, large-scale ecological trait data are not readily available for fly species.

View Article and Find Full Text PDF

Background: Advancing our knowledge of vector species genomes is a key step in our battle against the spread of diseases. Biting midges of the genus Culicoides are vectors of arboviruses that significantly affect livestock worldwide. Culicoides stellifer is a suspected vector with a wide range distribution in North America, for which cryptic diversity has been described.

View Article and Find Full Text PDF

Insect fauna occupy the largest proportion of animal biodiversity on earth, but the assessment or quantification in terms of species diversity is far from complete. Several recent studies have demonstrated the rapid pace at which insect population decline is occurring. There is an urgent need to document and quantify the diversity of insect fauna for a proper understanding of terrestrial ecosystems.

View Article and Find Full Text PDF

: Transposable elements (TEs) are the largest component of the genetic material of most eukaryotes and can play roles in shaping genome architecture and regulating phenotypic variation; thus, understanding genome evolution is only possible if we comprehend the contributions of TEs. However, the quantitative and qualitative contributions of TEs can vary, even between closely related lineages. For palm species, in particular, the dynamics of the process through which TEs have differently shaped their genomes remains poorly understood because of a lack of comparative studies.

View Article and Find Full Text PDF

Transposable elements (TEs) play powerful and varied evolutionary and functional roles, and are widespread in most eukaryotic genomes. Research into their unique biology has driven the creation of a large collection of databases, software, classification systems, and annotation guidelines. The diversity of available TE-related methods and resources raises compatibility concerns and can be overwhelming to researchers and communicators seeking straightforward guidance or materials.

View Article and Find Full Text PDF

Molecular identification is increasingly used to speed up biodiversity surveys and laboratory experiments. However, many groups of organisms cannot be reliably identified using standard databases such as GenBank or BOLD due to lack of sequenced voucher specimens identified by experts. Sometimes a large number of sequences are available, but with too many errors to allow identification.

View Article and Find Full Text PDF

This correspondence responds to the critique by Butler et al. (BMC Genomics 22:241, 2021) of our recent paper on transposable element (TE) persistence. We address the three main objections raised by Butler et al.

View Article and Find Full Text PDF

DNA barcoding and metabarcoding are now widely used to advance species discovery and biodiversity assessments. High-throughput sequencing (HTS) has expanded the volume and scope of these analyses, but elevated error rates introduce noise into sequence records that can inflate estimates of biodiversity. Denoising -the separation of biological signal from instrument (technical) noise-of barcode and metabarcode data currently employs abundance-based methods which do not capitalize on the highly conserved structure of the cytochrome c oxidase subunit I (COI) region employed as the animal barcode.

View Article and Find Full Text PDF

Background: The nuclear genomes of eukaryotes vary enormously in size, with much of this variability attributable to differential accumulation of transposable elements (TEs). To date, the precise evolutionary and ecological conditions influencing TE accumulation remain poorly understood. Most previous attempts to identify these conditions have focused on evolutionary processes occurring at the host organism level, whereas we explore a TE ecology explanation.

View Article and Find Full Text PDF

Biological conclusions based on DNA barcoding and metabarcoding analyses can be strongly influenced by the methods utilized for data generation and curation, leading to varying levels of success in the separation of biological variation from experimental error. The 5' region of cytochrome oxidase subunit I (COI-5P) is the most common barcode gene for animals, with conserved structure and function that allows for biologically informed error identification. Here, we present coil ( https://CRAN.

View Article and Find Full Text PDF

Background: Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and provide an opportunity for comprehensive annotation of TEs. Numerous methods exist for annotation of each class of TEs, but their relative performances have not been systematically compared.

View Article and Find Full Text PDF

ABSTRACT It is often argued that ecological communities admit of no useful generalizations or "laws" because these systems are especially prone to contingent historical events. Detractors respond that this argument assumes an overly stringent definition of laws of nature. Under a more relaxed conception, it is argued that ecological laws emerge at the level of communities and elsewhere.

View Article and Find Full Text PDF

Some notable exceptions aside, eukaryotic genomes are distinguished from those of Bacteria and Archaea in a number of ways, including chromosome structure and number, repetitive DNA content, and the presence of introns in protein-coding regions. One of the most notable differences between eukaryotic and prokaryotic genomes is in size. Unlike their prokaryotic counterparts, eukaryotes exhibit enormous (more than 60,000-fold) variability in genome size which is not explained by differences in gene number.

View Article and Find Full Text PDF

A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology.

View Article and Find Full Text PDF

Background: The genomes of eukaryotes vary enormously in size, with much of this diversity driven by differences in the abundances of transposable elements (TEs). There is also substantial structural and phylogenetic diversity among TEs, such that they can be classified into distinct classes, superfamilies, and families. Possible relationships between TE diversity (and not just abundance) and genome size have not been investigated to date, though there are reasons to expect either a positive or a negative correlation.

View Article and Find Full Text PDF

Media attention and the subsequent scientific backlash engendered by the claim by spokespeople for the Encyclopedia of DNA Elements (ENCODE) project that 80% of the human genome has a biochemical function highlight the need for a clearer understanding of function concepts in biology. This article provides an overview of two major function concepts that have been developed in the philosophy of science--the causal role concept and the selected effects concept--and their relevance to ENCODE. Unlike in some previous critiques, the ENCODE project is not considered problematic here because it employed a causal role definition of function (which is relatively common in genetics) but because of how this concept was misused.

View Article and Find Full Text PDF

Transposable elements (TEs) are among the most abundant components of many eukaryotic genomes. Efforts to explain TE abundance, as well as TE diversity among genomes, have led some researchers to draw an analogy between genomic and ecological processes. Adopting this perspective, we conducted an analysis of the cow (Bos taurus) genome using techniques developed by community ecologists to determine whether environmental factors influence community composition.

View Article and Find Full Text PDF

Background: Only a few transposable elements are known to exhibit site-specific insertion patterns, including the well-studied R-element retrotransposons that insert into specific sites within the multigene rDNA. The only known rDNA-specific DNA transposon, Pokey (superfamily: piggyBac) is found in the freshwater microcrustacean, Daphnia pulex. Here, we present a genome-wide analysis of Pokey based on the recently completed whole genome sequencing project for D.

View Article and Find Full Text PDF

Background: Transposable elements play a major role in genome evolution. Their capacity to move and/or multiply in the genome of their host may have profound impacts on phenotypes, and may have dramatic consequences on genome structure. Hybrid and polyploid clones have arisen multiple times in the Daphnia pulex complex and are thought to reproduce by obligate parthenogenesis.

View Article and Find Full Text PDF

Considerable variation exists not only in the kinds of transposable elements (TEs) occurring within the genomes of different species, but also in their abundance and distribution. Noting a similarity to the assortment of organisms among ecosystems, some researchers have called for an ecological approach to the study of transposon dynamics. However, there are several ways to adopt such an approach, and it is sometimes unclear what an ecological perspective will add to the existing co-evolutionary framework for explaining transposon-host interactions.

View Article and Find Full Text PDF