Machine learning techniques have been used to quantify the relationship between local structural features and variations in local dynamical activity in disordered glass-forming materials. To date these methods have been applied to an array of standard (Arrhenius and super-Arrhenius) glass formers, where work on "soft spots" indicates a connection between the linear vibrational response of a configuration and the energy barriers to non-linear deformations. Here we study the Voronoi model, which takes its inspiration from dense epithelial monolayers and which displays anomalous, sub-Arrhenius scaling of its dynamical relaxation time with decreasing temperature.
View Article and Find Full Text PDFWe use molecular simulations to study jamming of a crumpled bead-spring model polymer in a finite container and compare to jamming of repulsive spheres. After proper constraint counting, the onset of rigidity is seen to occur isostatically as in the case of repulsive spheres. Despite this commonality, the presence of the curved container wall and polymer backbone bonds introduce new mechanical properties.
View Article and Find Full Text PDFAlthough cell shape can reflect the mechanical and biochemical properties of the cell and its environment, quantification of 3D cell shapes within 3D tissues remains difficult, typically requiring digital reconstruction from a stack of 2D images. We investigate a simple alternative technique to extract information about the 3D shapes of cells in a tissue; this technique connects the ensemble of 3D shapes in the tissue with the distribution of 2D shapes observed in independent 2D slices. Using cell vertex model geometries, we find that the distribution of 2D shapes allows clear determination of the mean value of a 3D shape index.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
In polycrystalline materials, grain boundaries are sites of enhanced atomic motion, but the complexity of the atomic structures within a grain boundary network makes it difficult to link the structure and atomic dynamics. Here, we use a machine learning technique to establish a connection between local structure and dynamics of these materials. Following previous work on bulk glassy materials, we define a purely structural quantity (softness) that captures the propensity of an atom to rearrange.
View Article and Find Full Text PDF