The seven signal transducers of transcription (STATs) are cytokine-inducible modular transcription factors. They transmit the stimulation of cells with type I interferons (IFN-α/IFN-β) and type II interferon (IFN-ɣ) into altered gene expression patterns. The N-terminal domain (NTD) of STAT1 is a surface for STAT1/STAT1 homodimer and STAT1/STAT2 heterodimer formation and allows the cooperative DNA binding of STAT1.
View Article and Find Full Text PDFThe Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported.
View Article and Find Full Text PDFAcetylation-dependent inactivation of STAT1 can be mimicked by the exchange of its lysine residues K410 and K413 to glutamine residues. STAT3 harbors non-acetylatable arginine moieties at the corresponding sites R414 and R417. It is unclear whether the mutation of these sites to glutamine residues antagonizes STAT3 activation.
View Article and Find Full Text PDFThe cytokine-inducible transcription factors signal transducer and activator of transcription 5A and 5B (STAT5A and STAT5B) are important for the proper development of multicellular eukaryotes. Disturbed signaling cascades evoking uncontrolled expression of STAT5 target genes are associated with cancer and immunological failure. Here, we summarize how STAT5 acetylation is integrated into posttranslational modification networks within cells.
View Article and Find Full Text PDFInterferon-α (IFNα) has enormous potential for anti-proliferative and anti-viral treatments. However, clinical success is still hampered due to its limited bioavailability and thus, lack of sustained modulation of disease-relevant protective programs. Consequently, we here examined whether IFNα immobilized on nanoscale ferromagnetic R-Chitosan carriers is capable of inducing rapid and sustained activation of STAT1 signaling.
View Article and Find Full Text PDFAcetylation of signal transducer and activator of transcription (STAT) proteins has been recognized as a significant mechanism for the regulation of their cellular functions. Site-specific antibodies are available only for a minority of STATs. The detection of acetylated STATs by immunoprecipitation (IP) followed by western blot (WB) will be described in the following chapter.
View Article and Find Full Text PDFA fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors.
View Article and Find Full Text PDFSignal transducer and activator of transcription 1 (STAT1) is important for innate and adaptive immunity. Histone deacetylase inhibitors (HDACi) antagonize unbalanced immune functions causing chronic inflammation and cancer. Phosphorylation and acetylation regulate STAT1 and different IFNs induce phosphorylated STAT1 homo-/heterodimers, e.
View Article and Find Full Text PDFOncotarget
January 2012
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignant neoplasm and more than 50% of patients succumb to this disease. HNSCCs are characterized by therapy resistance, which relies on the overexpression of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts improvement of long-term survival, novel multi-targeting strategies triggering cancer cell death are urgently required.
View Article and Find Full Text PDF