Seeds are a key pathway for plant population recovery following disturbance. To prevent germination during unsuitable conditions, most species produce dormant seeds. In fire-prone regions, physical dormancy (PY) enables seeds to germinate after fire.
View Article and Find Full Text PDFAn understanding of fire-response traits is essential for predicting how fire regimes structure plant communities and for informing fire management strategies for biodiversity conservation. Quantification of these traits is complex, encompassing several levels of data abstraction scaling up from field observations of individuals, to general categories of species responses. We developed the Fire Ecology Database to accommodate this complexity.
View Article and Find Full Text PDFFire regimes are changing globally, leading to an increased need for management interventions to protect human lives and interests, potentially conflicting with biodiversity conservation. We conceptualized 5 major aspects of the process required to address threats to flora and used this conceptual model to examine and identify areas for improvement. We focused on threat identification, policy design, and action implementation.
View Article and Find Full Text PDFFire seasonality (the time of year of fire occurrence) has important implications for a wide range of demographic processes in plants, including seedling recruitment. However, the underlying mechanisms of fire-driven recruitment of species with physiological seed dormancy remain poorly understood, limiting effective fire and conservation management, with insights hampered by common methodological practices and complex dormancy and germination requirements. We sought to identify the mechanisms that regulate germination of physiologically dormant species in nature and assess their sensitivity to changes in fire seasonality.
View Article and Find Full Text PDFEnviron Manage
February 2019
Most conservation research aims to inform management of environmental challenges, but scientific evidence is used inconsistently in environmental programmes and practice. We used semi-structured retrospective interviews to ask 12 environmental scientists and 14 practitioners (land managers, park rangers, project managers and planners from natural resource management agencies) about factors that facilitated and hindered the use of scientific input during 15 environmental projects. We used the common factors from interviews to develop a process model describing how scientific input informs programmes and practice.
View Article and Find Full Text PDFTranslocation can reduce extinction risk by increasing population size and geographic range, and is increasingly being used in the management of rare and threatened plant species. A critical determinant of successful plant establishment is light environment. Wollemia nobilis (Wollemi pine) is a critically endangered conifer, with a wild population of 83 mature trees and a highly restricted distribution of less than 10 km2.
View Article and Find Full Text PDFThe dispersal capacity of plant species that rely on animals to disperse their seeds (biotic dispersal) can alter with changes to the populations of their keystone dispersal vectors. Knowledge on how biotic dispersal systems vary across landscapes allows better understanding of factors driving plant persistence. Myrmecochory, seed dispersal by ants, is a common method of biotic dispersal for many plant species throughout the world.
View Article and Find Full Text PDFDormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination.
View Article and Find Full Text PDFVariation in dormancy thresholds among species is rarely studied but may provide a basis to better understand the mechanisms controlling population persistence. Incorporating dormancy-breaking temperature thresholds into existing trait frameworks could improve predictions regarding seed bank persistence, and subsequently species resilience in response to fire, climate change and anthropogenic management. A key ecological strategy for many species from fire-prone ecosystems is the possession of a long-lived seed bank, ensuring recovery after fire.
View Article and Find Full Text PDFSpecies endemic to mountains on oceanic islands are subject to a number of existing threats (in particular, invasive species) along with the impacts of a rapidly changing climate. The Lord Howe Island endemic palm Hedyscepe canterburyana is restricted to two mountains above 300 m altitude. Predation by the introduced Black Rat (Rattus rattus) is known to significantly reduce seedling recruitment.
View Article and Find Full Text PDFEnviron Manage
October 2011
Effective management of large protected conservation areas is challenged by political, institutional and environmental complexity and inconsistency. Knowledge generation and its uptake into management are crucial to address these challenges. We reflect on practice at the interface between science and management of the Greater Blue Mountains World Heritage Area (GBMWHA), which covers approximately 1 million hectares west of Sydney, Australia.
View Article and Find Full Text PDFAmbient temperature and water availability regulate seasonal timing of germination. In fire-prone landscapes, the role of fire-related cues in affecting the range of temperatures and water potentials (psis) across which germination can occur is poorly known, especially in non-Mediterranean landscapes. We examined interactive effects of temperature (15 or 25 degrees C), psi (0 to -0.
View Article and Find Full Text PDFBackground And Aims: Germination studies of species from fire-prone habitats are often focused on the role that fire plays in breaking dormancy. However, for some plant groups in these habitats, such as the genus Leucopogon (Ericaceae), dormancy of fresh seeds is not broken by fire cues. In the field, these same species display a flush of seedling emergence post-fire.
View Article and Find Full Text PDF