Publications by authors named "Tomoki Tokuda"

Objective classification biomarkers that are developed using resting-state functional magnetic resonance imaging (rs-fMRI) data are expected to contribute to more effective treatment for psychiatric disorders. Unfortunately, no widely accepted biomarkers are available at present, partially because of the large variety of analysis pipelines for their development. In this study, we comprehensively evaluated analysis pipelines using a large-scale, multi-site fMRI dataset for major depressive disorder (MDD).

View Article and Find Full Text PDF

We hypothesized that persistent lifetime (PLT) images could represent tumor imaging traits, locations, and persistent contrasts of topological components (connected and hole components) corresponding to gene mutations such as epidermal growth factor receptor (EGFR) mutant signs. We aimed to develop a topological radiogenomic approach using PLT images to identify EGFR mutation-positive patients with non-small cell lung cancer (NSCLC). The PLT image was newly proposed to visualize the locations and persistent contrasts of the topological components for a sequence of binary images with consecutive thresholding of an original computed tomography (CT) image.

View Article and Find Full Text PDF

This study incorporated topology Betti number (BN) features into the prediction of primary sites of brain metastases and the construction of magnetic resonance-based imaging biopsy (MRB) models. The significant features of the MRB model were selected from those obtained from gray-scale and three-dimensional wavelet-filtered images, BN and inverted BN (iBN) maps, and clinical variables (age and gender). The primary sites were predicted as either lung cancer or other cancers using MRB models, which were built using seven machine learning methods with significant features chosen by three feature selection methods followed by a combination strategy.

View Article and Find Full Text PDF

In this work, laser-heated electrospinning (LES) process using carbon dioxide laser was explored as an eco-friendly method for producing ultrafine fibers. To enhance the thinning of fibers and the formation of fiber structure, planar or equibiaxial stretching and subsequent annealing processes were applied to poly(ethylene terephthalate) (PET) fiber webs prepared by LES. The structure and properties of the obtained webs were investigated.

View Article and Find Full Text PDF

Recently, the dimensional approach has attracted much attention, bringing a paradigm shift to a continuum of understanding of different psychiatric disorders. In line with this new paradigm, we examined whether there was common functional connectivity related to various psychiatric disorders in an unsupervised manner without explicitly using diagnostic label information. To this end, we uniquely applied a newly developed network-based multiple clustering method to resting-state functional connectivity data, which allowed us to identify pairs of relevant brain subnetworks and subject cluster solutions accordingly.

View Article and Find Full Text PDF

In neuroscience, the functional magnetic resonance imaging (fMRI) is a vital tool to non-invasively access brain activity. Using fMRI, the functional connectivity (FC) between brain regions can be inferred, which has contributed to a number of findings of the fundamental properties of the brain. As an important clinical application of FC, clustering of subjects based on FC recently draws much attention, which can potentially reveal important heterogeneity in subjects such as subtypes of psychiatric disorders.

View Article and Find Full Text PDF

Melt-electrospinning is an eco-friendly method for producing ultra-fine fibers without using any solvent. We prepared webs of poly(ethylene terephthalate) (PET) through melt-electrospinning using CO laser irradiation for heating. The PET webs comprised ultra-fine fibers of uniform diameter (average fiber diameter = 1.

View Article and Find Full Text PDF

Recently, slow earthquakes (slow EQ) have received much attention relative to understanding the mechanisms underlying large earthquakes and to detecting their precursors. Low-frequency earthquakes (LFE) are a specific type of slow EQ. In the present paper, we reveal the relevance of LFEs to the 11 March 2011 Great Tohoku Earthquake (Tohoku-oki EQ) by means of cluster analysis.

View Article and Find Full Text PDF

It is well known that depressive disorder is heterogeneous, yet little is known about its neurophysiological subtypes. In the present study, we identified neurophysiological subtypes of depression related to specific neural substrates. We performed cluster analysis for 134 subjects (67 depressive subjects and 67 controls) using a high-dimensional dataset consisting of resting state functional connectivity measured by functional MRI, clinical questionnaire scores, and various biomarkers.

View Article and Find Full Text PDF

Recent experiments have shown that optogenetic activation of serotonin neurons in the dorsal raphe nucleus (DRN) in mice enhances patience in waiting for future rewards. Here, we show that serotonin effect in promoting waiting is maximized by both high probability and high timing uncertainty of reward. Optogenetic activation of serotonergic neurons prolongs waiting time in no-reward trials in a task with 75% food reward probability, but not with 50 or 25% reward probabilities.

View Article and Find Full Text PDF

We propose a novel method to test the existence of community structure in undirected, real-valued, edge-weighted graphs. The method is based on the asymptotic behavior of extreme eigenvalues of a real symmetric edge-weight matrix. We provide a theoretical foundation for this method and report on its performance using synthetic and real data, suggesting that this new method outperforms other state-of-the-art methods.

View Article and Find Full Text PDF

We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features.

View Article and Find Full Text PDF