Publications by authors named "Ting-Hsuan Lai"

In this work, we demonstrated the practical use of Au@CuO core-shell and Au@CuSe yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@CuO core-shell nanocrystal template. Au@CuO and Au@CuSe displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the CuO and CuSe shells.

View Article and Find Full Text PDF

ZnS particles were grown over CuO cubes, octahedra, and rhombic dodecahedra for examination of their facet-dependent photocatalytic behaviors. After ZnS growth, CuO cubes stay photocatalytically inactive. ZnS-decorated CuO octahedra show enhanced photocatalytic activity, resulting from better charge carrier separation upon photoexcitation.

View Article and Find Full Text PDF

As the feet of clay, photocorrosion induced by hole accumulation has placed serious limitations on the widespread deployment of sulfide nanostructures for photoelectrochemical (PEC) water splitting. Developing sufficiently stable electrodes to construct durable PEC systems is therefore the key to the realization of solar hydrogen production. Here, an innovative charge-transfer manipulation concept based on the aligned hole transport across the interface has been realized to enhance the photostability of InS electrodes toward PEC solar hydrogen production.

View Article and Find Full Text PDF

Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO, with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting.

View Article and Find Full Text PDF