Background And Objectives: Extracellular vesicles and particles (EVPs) are released from virtually all cell types, and may package many inflammatory factors and, in the case of infection, viral components. As such, EVPs can play not only a direct role in the development and progression of disease but can also be used as biomarkers. Here, we characterized immune signatures of EVPs from the cerebrospinal fluid (CSF) of individuals with HTLV-1-associated myelopathy (HAM), other chronic neurologic diseases, and healthy volunteers (HVs) to determine potential indicators of viral involvement and mechanisms of disease.
View Article and Find Full Text PDFExtracellular vesicles (EVs) of various types are released or shed from all cells. EVs carry proteins and contain additional protein and nucleic acid cargo that relates to their biogenesis and cell of origin. EV cargo in liquid biopsies is of widespread interest owing to its ability to provide a retrospective snapshot of cell state at the time of EV release.
View Article and Find Full Text PDFEvidence continues to increase of the clinical utility extracellular vesicles (EVs) as translational biomarkers. While a wide variety of EV isolation and purification methods have been implemented, few techniques are high-throughput and scalable for removing excess fluorescent reagents (e.g.
View Article and Find Full Text PDFBiosensors (Basel)
October 2020
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a widely utilized technique for macromolecule and protein analysis. While multiple methods exist to visualize the separated protein bands on gels, one of most popular methods of staining the proteins is with Coomassie dye. A more recent approach is to use Bio-Rad stain-free technology for visualizing protein bands with UV light and achieve similar or greater sensitivity than that of Coomassie dye.
View Article and Find Full Text PDFJ Appl Physiol (1985)
October 2008
Tumor necrosis factor-alpha (TNF-alpha) is associated with sleep regulation in health and disease. Previous studies assessed sleep in mice genetically deficient in the TNF-alpha 55-kDa receptor. In this study, spontaneous and influenza virus-induced sleep profiles were assessed in mice deficient in both the 55-kDa and 75-kDa TNF-alpha receptors [TNF-2R knockouts (KO)] and wild-type (WT) strain controls.
View Article and Find Full Text PDFThe role of type I interferons (IFNs) in mediation of acute viral symptoms (fever, somnolence, anorexia, etc.) is unknown. To determine the role of type I IFN in selected symptom development, body temperature and sleep responses to a marginally lethal dose of X-31 influenza virus were examined in mice with a targeted mutation of the IFN receptor type I (IFN-RI knockouts) and compared to wild-type 129 SvEv control mice.
View Article and Find Full Text PDFType I interferons (IFNs) include IFNalpha and IFNbeta, both of which are elevated in acute viral infections and both of which have been shown to induce symptoms such as fever and somnolence when administered in pharmacological doses. To investigate the role of type I IFNs in mediation of acute respiratory viral symptoms we examined sleep and body temperature responses in mice with a targeted mutation of the IFN receptor type I (IFN-RI knockouts). IFN-RI knockouts (KOs) or wild-type 129 SvEv controls were challenged intratracheally (IT) with combined poly[rI.
View Article and Find Full Text PDFBrain Behav Immun
January 2007
Influenza virus infection up-regulates cytokines such as interleukin-1beta (IL-1beta) and activates the somatotropic axis and the hypothalamic-pituitary axis. Mice with deficits in growth hormone releasing hormone (GHRH) signaling (lit/lit mice) respond to influenza virus challenge with a progressive decrease in sleep and lower survival rates. Current experiments characterize plasma glucocorticoid responses and hypothalamic and lung mRNA expression of sleep-related genes in lit/lit mice and their heterozygous controls after influenza virus challenge.
View Article and Find Full Text PDFDouble-stranded (ds)RNA is made as a by-product of viral replication. Synthetic dsRNA induces virtually all of the same systemic symptoms as acute viral infections, such as fever and malaise. In order to develop a model of respiratory viral infections (such as influenza) suitable for use in gene knockout mice (where the deleted gene may affect viral replication), we examined C57BL/6 mouse body temperature and locomotor activity responses to the synthetic dsRNA polyriboinosinic.
View Article and Find Full Text PDFCCR2 and its major ligand, chemokine ligand 2 (CCL2)/monocyte chemotactic protein-1, have been found to influence T1/T2 immune response polarization. Our objective was to directly compare the roles of CCR2 and CCL2 in T1/T2 immune response polarization using a model of pulmonary Cryptococcus neoformans infection. Either deletion of CCR2 or treatment of wild-type mice with CCL2 neutralizing Ab produced significant and comparable reductions in macrophage and T cell recruitment into the lungs following infection.
View Article and Find Full Text PDF