J Neurosci Methods
July 2025
Background: There is growing interest in using Hadamard Encoding and Reconstruction for MEGA-Edited Spectroscopy (HERMES) within the mesial temporal lobe (MTL). For cross-sectional group comparisons and longitudinal repeated measures designs, an understanding of the internal and test-retest validity of γ-aminobutyric acid (GABA+) and glutathione (GSH) is critical. We therefore evaluated the reproducibility of the consensus recommended semi-localization by adiabatic selective refocusing (sLASER) localization for edited-MRS acquisitions in a challenging region, the MTL.
View Article and Find Full Text PDFJ Neurosci Methods
June 2025
Background: Proton magnetic resonance spectroscopy (MRS) can be used to quantify multiple neurometabolites. However, due to the difficulty of separating overlapping signals at the commonly used field strength of 3 T, the quantified values are often composites of metabolically related chemicals. This can complicate interpretation and mask effects of interest.
View Article and Find Full Text PDFPurpose: Neurochemicals of interest quantified by MRS are often composites of overlapping signals. At higher field strengths (i.e.
View Article and Find Full Text PDFBackground And Purpose: It is estimated that 18%-30% of patients with concussion experience symptoms lasting more than 1 month, known as persistent post-concussion symptoms (PPCS). Symptoms can be debilitating, and include headache, dizziness, nausea, problems with memory and concentration, sleep and mood disruption, and exercise intolerance. Previous studies have used quantitative susceptibility mapping (QSM) to show altered tissue susceptibility levels in adults acutely following concussion, however this finding has yet to be investigated in participants with PPCS.
View Article and Find Full Text PDFIn patients with migraine, an excitation-inhibition imbalance that fluctuates relative to attack onset has been proposed to contribute to the underlying pathophysiology of migraine, but this has yet to be explored in children and adolescents. This prospective, observational, cohort study examined glutamate and gamma-aminobutyric acid (GABA) levels across the phases of a migraine attack and interictally in children and adolescents using magnetic resonance spectroscopy. Macromolecule-suppressed GABA (sensorimotor cortex and thalamus) and glutamate (occipital cortex, sensorimotor cortex, and thalamus) were measured in children and adolescents (10-17 years) with a migraine diagnosis with or without aura 4 times over 2 weeks.
View Article and Find Full Text PDFJ-difference-edited MRS is widely used to study GABA in the human brain. Editing for low-concentration target molecules (such as GABA) typically exhibits lower signal-to-noise ratio (SNR) than conventional non-edited MRS, varying with acquisition region, volume and duration. Moreover, spectral lineshape may be influenced by age-, pathology-, or brain-region-specific effects of metabolite T, or by task-related blood-oxygen level dependent (BOLD) changes in functional MRS contexts.
View Article and Find Full Text PDFConcussion is commonly characterized by a cascade of neurometabolic changes following injury. Magnetic Resonance Spectroscopy (MRS) can be used to quantify neurometabolites non-invasively. Longitudinal changes in neurometabolites have rarely been studied in pediatric concussion, and fewer studies consider symptoms.
View Article and Find Full Text PDFMetabolites play important roles in brain development and their levels change rapidly in the prenatal period and during infancy. Metabolite levels are thought to stabilize during childhood, but the development of neurochemistry across early-middle childhood remains understudied. We examined the developmental changes of key metabolites (total N-acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate+glutamine, Glx; and myo-inositol, mI) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior cingulate cortex (ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-sectional/longitudinal design in children aged 2-11 years (ACC: N = 101 children, 112 observations; LTP: N = 95 children, 318 observations).
View Article and Find Full Text PDFMillions of children sustain a concussion annually. Concussion disrupts cellular signaling and neural pathways within the brain but the resulting metabolic disruptions are not well characterized. Magnetic resonance spectroscopy (MRS) can examine key brain metabolites (e.
View Article and Find Full Text PDFFunctional magnetic resonance spectroscopy (fMRS) of GABA at 3 T poses additional challenges compared with fMRS of other metabolites because of the difficulties of measuring GABA levels; GABA is present in the brain at relatively low concentrations, and its signal is overlapped by higher concentration metabolites. Using 7 T fMRS, GABA levels have been shown to decrease specifically during motor learning (and not during a control task). Though the use of 7 T is appealing, access is limited.
View Article and Find Full Text PDFPurpose: Multiple data formats in the MRS community currently hinder data sharing and integration. NIfTI-MRS is proposed as a standard spectroscopy data format, implemented as an extension to the Neuroimaging informatics technology initiative (NIfTI) format. This standardized format can facilitate data sharing and algorithm development as well as ease integration of MRS analysis alongside other imaging modalities.
View Article and Find Full Text PDFMagnetic resonance spectroscopy (MRS) is a non-invasive neuroimaging technique used to measure brain chemistry in vivo and has been used to study the healthy brain as well as neuropathology in numerous neurological disorders. The number of multi-site studies using MRS are increasing; however, non-biological variability introduced during data collection across multiple sites, such as differences in scanner vendors and site-specific acquisition implementations for MRS, can obscure detection of biological effects of interest. ComBat is a data harmonization technique that can remove non-biological sources of variance in multisite studies.
View Article and Find Full Text PDFObjective: Benign epilepsy with centrotemporal spikes (BECTS, also known as Rolandic epilepsy) is a common epilepsy syndrome that is associated with literacy and language impairments. The neural mechanisms of the syndrome are not known. The primary objective of this study was to test the hypothesis that functional connectivity within the language network is decreased in children with BECTS.
View Article and Find Full Text PDF