Rheumatology (Oxford)
September 2025
Heme is essential for a variety of proteins involved in vital physiological functions in the body, such as oxygen transport, drug metabolism, biosynthesis of steroids, signal transduction, antioxidant defense and mitochondrial respiration. However, free heme is potentially cytotoxic due to the capacity of heme iron to promote the oxidation of cellular molecules. The liver plays a central role in heme metabolism by significantly contributing to heme synthesis, heme detoxification, and recycling of heme iron.
View Article and Find Full Text PDFIron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment.
View Article and Find Full Text PDFMalaria and iron deficiency are major global health problems with extensive epidemiological overlap. Iron deficiency-induced anaemia can protect the host from malaria by limiting parasite growth. On the other hand, iron deficiency can significantly disrupt immune cell function.
View Article and Find Full Text PDFCell Oncol (Dordr)
December 2023
Background: Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second deadliest malignancy worldwide. Current dietary habits are associated with increased levels of iron and heme, both of which increase the risk of developing CRC. The harmful effects of iron overload are related to the induction of iron-mediated pro-tumorigenic pathways, including carcinogenesis and hyperproliferation.
View Article and Find Full Text PDFIron is an essential micronutrient. Both iron overload and deficiency are highly detrimental to humans, and tissue iron levels are finely regulated. The use of experimental animal models of iron overload or deficiency has been instrumental to advance knowledge of the mechanisms involved in the systemic and cellular regulation of iron homeostasis.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a heterogeneous disease with poor prognosis and limited treatment strategies. Determining the role of cell-extrinsic regulators of leukemic cells is vital to gain clinical insights into the biology of AML. Iron is a key extrinsic regulator of cancer, but its systemic regulation remains poorly explored in AML.
View Article and Find Full Text PDFAntioxid Redox Signal
August 2021
Oxygen metabolism and iron homeostasis are closely linked. Iron facilitates the oxygen-carrying capacity of blood, and its deficiency causes anemia. Conversely, excess free iron is detrimental for stimulating the formation of reactive oxygen species, causing tissue damage.
View Article and Find Full Text PDFIron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The Nrf2 transcription factor orchestrates cell-intrinsic protective antioxidant responses, and the peptide hormone hepcidin maintains systemic iron homeostasis, but is pathophysiologically decreased in haemochromatosis and beta-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives Bmp6 expression in liver sinusoid endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes.
View Article and Find Full Text PDFNat Commun
September 2017
Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression.
View Article and Find Full Text PDFBackground And Aims: In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH), which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH.
View Article and Find Full Text PDFBackground & Aims: The liver, being the major site of iron storage, is particularly exposed to the toxic effects of iron. Transcription factor NRF2 is critical for protecting the liver against disease by activating the transcription of genes encoding detoxification/antioxidant enzymes. We aimed to determine if the NRF2 pathway plays a significant role in the protection against hepatic iron overload.
View Article and Find Full Text PDFA number of recent observations have suggested a potential role for membrane-bound gamma-glutamyltransferase (GGT) in tumor progression and appearance of more aggressive and resistant phenotypes, through redox interactions leading to production of reactive oxygen species. The present study was aimed to evaluate whether such pro-oxidant activity of GGT can promote oxidative DNA damage, thus contributing to cancer genomic instability. Human GGT-transfected melanoma cells were studied, and DNA damage was measured by using the alkaline comet assay.
View Article and Find Full Text PDFPolybrominated diphenyl ethers (PBDEs) are commonly used as flame retardants in a variety of commercial and household products. They have been detected in the environment and accumulate in mammalian tissues and fluids. PBDE toxicity is thought to be associated with endocrine disruption, developmental neurotoxicity and changes in fetal development.
View Article and Find Full Text PDFFree Radic Biol Med
January 2009
The skin is a protective barrier against external insults and any lesion must be rapidly and efficiently repaired. Dermal fibroblasts are the major source of extracellular connective tissue matrix and play an important role in wound healing. Vitamin C is an important water-soluble free radical scavenger and an essential cofactor for collagen synthesis by dermal fibroblasts and, consequently, may contribute to the maintenance of healthy skin.
View Article and Find Full Text PDFThiopurine antimetabolites, such as azathioprine (Aza) and 6-thioguanine (6-TG), are widely used in the treatment of cancer, inflammatory conditions and organ transplantation patients. Recent work has shown that cells treated with 6-TG and UVA generate ROS, with implied oxidatively generated modification of DNA. In a study of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in renal transplant patients, we provided the first in vivo evidence linking Aza and oxidatively damaged DNA.
View Article and Find Full Text PDFSystemic chemotherapy is extensively used in cancer therapy, however, for many treatments' response rates are limited. Furthermore, certain regimens are frequently associated with significant morbidity and occasional mortality. Consequently, when alternative options exist, it is desirable to reserve a particular chemotherapy for those patients whose tumours will respond.
View Article and Find Full Text PDFFree Radic Biol Med
October 2007
Vitamin C (ascorbic acid, AA) is an important antioxidant in human plasma. It is clear, however, that AA has other important, nonantioxidant roles in cells. Of particular interest is its involvement in iron metabolism, since AA enhances dietary iron absorption, increases the activity of Fe(2+)-dependent cellular enzymes, promotes Fenton reactions in vitro, and was reported to have deleterious effects in individuals with iron overload.
View Article and Find Full Text PDFIn the presence of oxygen, ascorbic acid (AA) is unstable in aqueous media and oxidises to dehydroascorbate (DHA), generating reactive intermediates such as ascorbate free radical and H2O2. It is proposed that the cytotoxicity of AA is due to the extracellular production of H2O2 and that this is mediated by transition metal ions present in cell media. Here we investigate the role of extracellular H2O2 and metal ions in the genotoxicity of AA in cell culture models.
View Article and Find Full Text PDFWhile ELISA is a frequently used means of assessing 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) in biological fluids, differences in baseline urinary 8-oxodG levels, compared to chromatographic techniques, have raised questions regarding the specificity of immunoassays. Recently, ELISA of salivary 8-oxodG has been used to report on periodontal disease. We compared salivary 8-oxodG levels, determined by two commercial ELISA kits, to liquid chromatography-tandem mass spectrometry (LC-MS/MS) with prior purification using solid-phase extraction.
View Article and Find Full Text PDFOxaliplatin is frequently used in the therapy of cancer. In DNA, oxaliplatin induces, like cisplatin, the formation of crosslinks, which are commonly accepted as being responsible for the cytotoxicity of platinum agents. The detection of oxaliplatin-induced DNA crosslink formation and repair could be a good measure of assessing how a patient is responding to the agent.
View Article and Find Full Text PDFVitamin C (or ascorbic acid) is regarded as the most important water-soluble antioxidant in human plasma and mammalian cells which have mechanisms to recycle and accumulate it against a concentration gradient, suggesting that the vitamin might also have important intracellular functions. In this review we summarize evidence from human trials that have attempted an association between vitamin C supplementation and an effect on biomarkers of oxidative DNA damage. Most studies reviewed herein showed either a vitamin C-mediated reduction in oxidative DNA damage or a null effect, whereas only a few studies showed an increase in specific base lesions.
View Article and Find Full Text PDF